Atomic Units

It is often convenient to write equations and carry out calculations in atomic units.
quantity atomic unit symbol S.I.
mass electron mass $\quad m_{\mathrm{e}} \quad 9.109 \times 10^{-31} \mathrm{~kg}$

Bohr radius
a_{0}
$52.92 \times 10^{-12} \mathrm{~m}$
charge electron charge e $1.602 \times 10^{-19} \mathrm{C}$
energy Hartree H $2625 \mathrm{~kJ} \mathrm{~mol}^{-1} 27.2 \mathrm{eV}$
velocity speed of light
$c \quad 2.998 \times 10^{-8} \mathrm{~m} \mathrm{~s}^{-1}$
angular momentum
\hbar
$1.0546 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
e.g for the H atom

$$
\begin{aligned}
& \hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{Z \mathrm{e}^{2}}{4 \pi \varepsilon_{0} r} \quad \Rightarrow-\frac{1}{2} \nabla^{2}-\frac{Z}{r} \text { a.u. } \\
& E_{\mathrm{n}}=-\frac{Z \mathrm{e}^{4} \mu}{2 \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}} \cdot \frac{1}{n^{2}} \quad \Rightarrow-\frac{1}{2} \cdot \frac{Z}{n^{2}} \text { a.u. }
\end{aligned}
$$

The Born-Oppenheimer Approximation

The full Hamiltonian for a molecule is

$$
\begin{array}{rlll}
\hat{\mathrm{H}}=-\frac{1}{2} \sum_{i} \nabla_{\mathrm{e}}^{2}-\frac{1}{2} \sum_{k} \frac{\mathrm{~m}}{\mathrm{~m}_{\mathrm{k}}} \nabla_{\mathrm{k}}^{2}-\sum_{i} \sum_{k} \frac{Z_{k}}{r_{i k}}+\sum_{i} \sum_{j} \frac{1}{r_{i j}}+\sum_{k 1} \sum_{k 2} \frac{Z_{k 1} Z_{k 2}}{r_{k 1 k 2}} \\
\text { electrons nuclei } & \text { el-nucl. } & \text { electron } & \text { pairs of } \\
& \text { pairs } & \text { pairs } & \text { nuclei }
\end{array}
$$

Ψ_{int} has $3(\mathrm{n}+\mathrm{N}-1)$ coordinates - impossible to solve exactly.
The Born-Oppenheimer Approximation states that electronic motion is so fast that nuclei can be considered fixed.

The Schrödinger equation can then be solved (usually approximately) for the electronic wavefunction for fixed nuclear distances. The plot of electronic energy as a function of nuclear distances is called the potential energy surface.

The P.E. surface represents the potential within which the nuclei move. Motion of nuclei on this surface corresponds to molecular vibration. (Rotation is considered as a special case of vibration in which internuclear distances are fixed.)

The B.O. Approximation is another example of simplifying a Q.M. problem by separation of variables.

$$
\Psi_{\mathrm{tot}}=\Psi_{\mathrm{el}} \Psi_{\mathrm{vib}} \Psi_{\mathrm{rot}} \quad E_{\mathrm{tot}}=E_{\mathrm{el}}+E_{\mathrm{vib}}+E_{\mathrm{rot}}
$$

A molecule is stable if its energy < the energy of separate atoms.

The Electron Pair Bond

Consider two independent electrons with wavefunctions
$\psi_{\mathrm{a}}(1), \psi_{\mathrm{b}}(2) ;$ and $E=E_{\mathrm{a}}+E_{\mathrm{b}}$. electron repulsion ignored
Since $\psi_{a}(1) \psi_{b}(2)$ is indistinguishable from $\psi_{b}(1) \psi_{a}(2)$ possible total wavefunctions are:

$$
\begin{aligned}
& \Psi_{\mathrm{S}}=\frac{1}{\sqrt{2}}\left[\psi_{\mathrm{a}}(1) \psi_{\mathrm{b}}(2)+\psi_{\mathrm{b}}(1) \psi_{\mathrm{a}}(2)\right] \\
& \Psi_{\mathrm{A}}=\frac{1}{\sqrt{2}}\left[\psi_{\mathrm{a}}(1) \psi_{\mathrm{b}}(2)-\psi_{\mathrm{b}}(1) \psi_{\mathrm{a}}(2)\right]
\end{aligned}
$$

For any point between the nuclei where $\vec{r}(1) \approx \vec{r}(2)$
$\psi_{\mathrm{a}}(1) \approx \psi_{\mathrm{a}}(2), \psi_{\mathrm{b}}(1) \approx \psi_{\mathrm{b}}(2)$

$$
\Rightarrow \Psi_{\mathrm{A}} \approx 0, \quad \Psi_{\mathrm{S}} \approx \sqrt{2} \psi_{\mathrm{a}}(1) \psi_{\mathrm{b}}(2)
$$

For points outside the internuclear region, either
$\psi_{\mathrm{a}} \approx 0$ or $\psi_{\mathrm{b}} \approx 0 \Rightarrow \Psi_{\mathrm{S}} \approx 0$
i.e. Ψ_{S} represents bond formation with a pair of electrons between nuclei.

To satisfy the Pauli Principle the total wavefunction, including the spin part ϕ, must be antisymmetric. Thus,

$$
\Psi_{0}=\Psi_{\mathrm{S}} \phi_{\mathrm{A}}=\frac{1}{2}\left[\psi_{\mathrm{a}} \psi_{\mathrm{b}}+\psi_{\mathrm{b}} \psi_{\mathrm{a}}\right][\alpha \beta-\beta \alpha]
$$

The spins are paired in the bond. This is the essence of the Valence Bond Method.

H_{2} : Valence Bond Approach

For an electron pair in the bonding orbital,

$$
\Psi_{0}=\Psi_{S} \phi_{\mathrm{A}}=\frac{1}{2}[\mathrm{a}(1) \mathrm{b}(2)+\mathrm{b}(1) \mathrm{a}(2)][\alpha \beta-\beta \alpha]
$$

where a and b represent the 1 s wavefunctions in H atoms A and B .

$$
\begin{aligned}
& \hat{\mathrm{H}}=-\underbrace{\frac{1}{2} \nabla_{1}^{2}-\frac{1}{r_{\mathrm{a} 1}}}-\frac{1}{r_{\mathrm{b} 1}}-\underbrace{-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{\mathrm{b} 2}}}_{\hat{\mathrm{H}}_{\mathrm{b}}(2)}-\frac{1}{r_{\mathrm{a} 2}}+\frac{1}{r_{12}}\left\{+\frac{1}{R_{\mathrm{ab}}}\right\} \\
&= \hat{\mathrm{H}}_{\mathrm{ab}}(1,2) \\
&=E_{1 \mathrm{~s}}+E_{1 \mathrm{~s}}+E_{12} \\
& E_{12}=\frac{\langle\Psi| \hat{\mathrm{H}}_{\mathrm{ab}}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\frac{\mathrm{J}+\mathrm{K}}{1+\mathrm{S}^{2}}
\end{aligned}
$$

where Coulomb integral $\quad \mathrm{J}=\langle\mathrm{ab}| \hat{\mathrm{H}}_{\mathrm{ab}}|\mathrm{ab}\rangle$
exchange integral $\quad \mathrm{K}=\langle\mathrm{ab}| \hat{\mathrm{H}}_{\mathrm{ab}}|\mathrm{ba}\rangle$
overlap integral $\quad S=\langle a \mid b\rangle$
Note: $\quad\langle\mathrm{ab} \mid \mathrm{ba}\rangle \equiv \int \mathrm{a}(1) \mathrm{b}(1) \mathrm{d} \tau_{1} \cdot \int \mathrm{~b}(2) \mathrm{a}(2) \mathrm{d} \tau_{2}=\mathrm{S}^{2}$

Extensions to the Valence Bond Method

The pure valence bond wavefunction is covalent - each atom contributes one electron to the bond between them, and these atoms are shared equally.

An improved wavefunction has some "ionic" terms:

$$
\Psi_{\text {space }}=N\{\mathrm{ab}+\mathrm{ba}+\lambda[\mathrm{aa}+\mathrm{bb}]\}
$$

where $\boldsymbol{\lambda}$ is a variational parameter.

This concept can be generalized to include all possible arrangements of electron pairs, including other covalent structures.
e.g. benzene

Often it is useful to make an electron pair bond from atomic orbitals that are themselves combinations of atomic orbitals centred on the same atom. These are called hybrid orbitals.

Hybrid Orbitals

A hybrid orbital contains contributions from more than one atomic orbital centred on the same atom.
e.g. Construct hybrids from oxygen $\mathrm{s}, \mathrm{p}_{\mathrm{x}}$ and p_{y} orbitals in $\mathrm{H}_{2} \mathrm{O}$.

$$
\begin{aligned}
& \mathrm{h}_{1}=a \psi_{\mathrm{s}}+b \psi_{\mathrm{p}}(\theta / 2) \\
& \mathrm{h}_{2}=a \psi_{\mathrm{s}}+b \psi_{\mathrm{p}}(-\theta / 2)
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{\mathrm{p}}(\theta / 2) & =\psi_{\mathrm{px}} \cos (\theta / 2)+\psi_{\mathrm{py}} \sin (\theta / 2) \\
\psi_{\mathrm{p}}(-\theta / 2) & =\psi_{\mathrm{px}} \cos (\theta / 2)-\psi_{\mathrm{py}} \sin (\theta / 2)
\end{aligned}
$$

but since $\left\langle\mathrm{h}_{1} \mid \mathrm{h}_{1}\right\rangle=1, \quad a^{2}+b^{2}=1$
and
$\left\langle\mathrm{h}_{1} \mid \mathrm{h}_{2}\right\rangle=0, \quad a^{2}+b^{2} \cos ^{2}(\theta / 2)-b^{2} \sin ^{2}(\theta / 2)=0$
$\Rightarrow \quad a^{2}=\frac{\cos \theta}{(\cos \theta)-1}$

The s character of the hybrid increases as the bond angle changes from 90° to 180°.

Hybridization - Special Cases

sp

$$
\left.\begin{array}{l}
\mathrm{h}_{1}=a \psi_{2 \mathrm{~s}}+b \psi_{2 \mathrm{px}} \\
\mathrm{~h}_{2}=a^{\prime} \psi_{2 \mathrm{~s}}+b^{\prime} \psi_{2 \mathrm{px}}
\end{array}\right\}
$$

$\left\langle\mathrm{h}_{1} \mid \mathrm{h}_{1}\right\rangle=1 \quad\left\langle\mathrm{~h}_{1} \mid \mathrm{h}_{2}\right\rangle=0 \quad \Rightarrow \quad a^{2}+b^{2}=1, a a^{\prime}+b b^{\prime}=0$
$a=a^{\prime}=b=-b^{\prime}=\frac{1}{\sqrt{2}}$
sp^{2}

$$
a^{2}=\frac{1}{3} \quad b^{2}=\frac{2}{3}
$$

$$
\left.\begin{array}{l}
\mathrm{h}_{1}=\frac{1}{\sqrt{3}} \psi_{2 \mathrm{~s}}-\sqrt{\frac{2}{3}} \psi_{2 \mathrm{px}} \\
\mathrm{~h}_{2}=\frac{1}{\sqrt{3}} \psi_{2 \mathrm{~s}}+\frac{1}{\sqrt{6}} \psi_{2 \mathrm{px}}-\frac{1}{\sqrt{2}} \psi_{2 \mathrm{py}} \\
\mathrm{~h}_{3}=\frac{1}{\sqrt{3}} \psi_{2 \mathrm{~s}}+\frac{1}{\sqrt{6}} \psi_{2 \mathrm{px}}+\frac{1}{\sqrt{2}} \psi_{2 \mathrm{py}}
\end{array}\right\}
$$

$$
a^{2}=\frac{1}{4} \quad b^{2}=\frac{3}{4}
$$

$$
\mathrm{h}_{1}=\frac{1}{2} \psi_{2 \mathrm{~s}}-\frac{\sqrt{3}}{2} \psi_{2 \mathrm{px}} \quad \text { etc. } \quad O R
$$

$$
\left.\begin{array}{l}
\mathrm{h}_{1}=\frac{1}{2}\left[\psi_{2 \mathrm{~s}}+\psi_{2 \mathrm{px}}+\psi_{2 \mathrm{py}}+\psi_{2 \mathrm{pz}}\right] \\
\mathrm{h}_{2}=\frac{1}{2}\left[\psi_{2 \mathrm{~s}}-\psi_{2 \mathrm{px}}-\psi_{2 \mathrm{py}}+\psi_{2 \mathrm{pz}}\right] \\
\mathrm{h}_{3}=\frac{1}{2}\left[\psi_{2 \mathrm{~s}}+\psi_{2 \mathrm{px}}-\psi_{2 \mathrm{py}}-\psi_{2 \mathrm{pz}}\right] \\
\mathrm{h}_{4}=\frac{1}{2}\left[\psi_{2 \mathrm{~s}}-\psi_{2 \mathrm{px}}+\psi_{2 \mathrm{py}}-\psi_{2 \mathrm{pz}}\right]
\end{array}\right\} \quad \begin{aligned}
& \text { aligned towards } \\
& \text { corners of a cube }
\end{aligned}
$$

