The Variation Principle

The energy calculated using an approximate wavefunction cannot be less than the true energy of the system.

If χ is a trial function,

$$
\frac{\langle\chi| \hat{\mathrm{H}}|\chi\rangle}{\langle\chi \mid \chi\rangle}=E \geqslant E_{\text {exact }}=\frac{\langle\Psi| \hat{\mathrm{H}}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}
$$

For example, suppose χ is a linear combination of exact eigenfunctions of $\hat{\mathrm{H}}$,

$$
\chi=\sum_{i} c_{i} \psi_{i} \quad \text { with } \quad \hat{\mathrm{H}} \psi_{i}=E_{i} \psi_{i}
$$

Then

$$
\begin{aligned}
\langle\chi| \hat{\mathrm{H}}|\chi\rangle & =\sum_{j} \sum_{i} c_{j}^{*} c_{i}\left\langle\psi_{j}\right| \hat{\mathrm{H}}\left|\psi_{i}\right\rangle \\
& =\sum_{j} \sum_{i} c_{j}^{*} c_{i} E_{i}\left\langle\psi_{j} \mid \psi_{i}\right\rangle \\
& =\sum_{i} c_{i}^{*} c_{i} E_{i}
\end{aligned}
$$

But since $c_{i}^{*} c_{i}=c_{i}^{2} \geqslant 0$ for real coefficients, and $E_{i} \geqslant E_{0}$

$$
\frac{\langle\chi| \hat{\mathrm{H}}|\chi\rangle}{\langle\chi \mid \chi\rangle}=\frac{\sum_{i} c_{i}^{2} E_{i}}{\sum_{i} c_{i}^{2}} \geqslant E_{0}
$$

Note: There are other types of variational parameters, in addition to coefficients of linear combination.

$\mathrm{H}_{2}{ }^{+}$: LCAO-MO Approach

Linear Combination of Atomic Orbitals

H_{2}^{+}:

$$
\hat{\mathrm{H}}=-\frac{1}{2} \nabla^{2}-\frac{1}{r_{\mathrm{a}}}-\frac{1}{r_{\mathrm{b}}}+\frac{1}{R_{\mathrm{ab}}}
$$

only one electron

Assume $\Psi=c_{\mathrm{a}} a+c_{\mathrm{b}} b$ where a, b are H 1 s wavefunctions

$$
\begin{aligned}
E=\frac{\langle\Psi| \hat{\mathrm{H}}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} & =\frac{c_{\mathrm{a}}^{2}\langle a| \hat{\mathrm{H}}|a\rangle+2 c_{\mathrm{a}} c_{\mathrm{b}}\langle a| \hat{\mathrm{H}}|b\rangle+c_{\mathrm{b}}^{2}\langle b| \hat{\mathrm{H}}|b\rangle}{c_{\mathrm{a}}^{2}\langle a \mid a\rangle+2 c_{\mathrm{a}} c_{\mathrm{b}}\langle a \mid b\rangle+c_{\mathrm{b}}^{2}\langle b \mid b\rangle} \\
& =\frac{c_{\mathrm{a}}^{2} \alpha+2 c_{\mathrm{a}} c_{\mathrm{b}} \beta+c_{\mathrm{b}}^{2} \alpha}{c_{\mathrm{a}}^{2}+2 c_{\mathrm{a}} c_{\mathrm{b}} S+c_{\mathrm{b}}^{2}}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\alpha=\langle a| \hat{\mathrm{H}}|a\rangle=\langle b| \hat{\mathrm{H}}|b\rangle & \text { a Coulomb integral } \\
\beta=\langle a| \hat{\mathrm{H}}|b\rangle=\langle b| \hat{\mathrm{H}}|a\rangle & \text { a resonance integral } \\
S=\langle a \mid b\rangle=\langle b \mid a\rangle & \text { the overlap integral }
\end{array}
$$

Coulomb integral

$$
\begin{aligned}
\alpha & =\langle a|-\frac{1}{2} \nabla^{2}-\frac{1}{r_{\mathrm{a}}}-\frac{1}{r_{\mathrm{b}}}+\frac{1}{R_{\mathrm{ab}}}|a\rangle \\
& =E_{\mathrm{ls}}-\langle a| \frac{1}{r_{\mathrm{b}}}|a\rangle+1 / R_{\mathrm{ab}} \\
& \text { H atom } \\
\text { energy } & \text { el.-nucl. } \quad \text { nuclear } \\
\text { attraction } & \text { repulsion }
\end{aligned}
$$

Resonance integral

$$
\beta=\left(E_{1 \mathrm{~s}}+1 / R_{\mathrm{ab}}\right) S-\langle a| \frac{1}{r_{\mathrm{b}}}|b\rangle<0
$$

The Variation Principle is used to find the optimum c_{a} and c_{b} : setting $\quad \frac{\partial E}{\partial c_{\mathrm{a}}}=0$

$$
\left.\frac{\partial E}{\partial c_{\mathrm{b}}}=0\right\}
$$

$$
\Rightarrow \begin{aligned}
& c_{\mathrm{a}}(\alpha-E)+c_{\mathrm{b}}(\beta-S E)=0 \\
& c_{\mathrm{a}}(\beta-S E)+c_{\mathrm{b}}(\alpha-E)=0
\end{aligned}
$$

requires that

These equations can be solved by using the normalization condition: $\quad\langle\Psi \mid \Psi\rangle=c_{\mathrm{a}}^{2}+2 c_{\mathrm{a}} c_{\mathrm{b}} S+c_{\mathrm{b}}^{2}=1$

$$
\begin{aligned}
& \left|\begin{array}{cc}
\alpha-E & \beta-S E \\
\beta-S E & \alpha-E
\end{array}\right|=0 \\
& (\alpha-E)^{2}-(\beta-S E)^{2}=0 \\
& E^{0}=\frac{\alpha+\beta}{1+S} \quad E^{*}=\frac{\alpha-\beta}{1-S} \\
& c_{\mathrm{a}}=c_{\mathrm{b}} \\
& c_{\mathrm{a}}=-c_{\mathrm{b}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{2}: \text { LCAO-MO Approach } \\
& \begin{aligned}
& \hat{\mathrm{H}}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{\mathrm{a} 1}}-\frac{1}{r_{\mathrm{b} 2}}-\frac{1}{r_{\mathrm{b} 1}}-\frac{1}{r_{\mathrm{a} 2}}+\frac{1}{r_{12}}+\frac{1}{R_{\mathrm{ab}}} \\
&=\hat{\mathrm{h}}_{0}(1)+\hat{\mathrm{h}}_{0}(2)+\frac{1}{r_{12}}-\frac{1}{R_{\mathrm{ab}}} \quad \text { where } \hat{\mathrm{h}}_{0} \text { is the 1-e } \\
& \text { Hamiltonian for } \mathrm{H}_{2}^{+}
\end{aligned}
\end{aligned}
$$

Start by ignoring $1 / r_{12}$ (independent electron approach):

$$
\Psi \approx \psi_{i}(1) \psi_{j}(2) \Phi_{\text {spin }} \quad \text { where } \psi_{i} \text { are } \mathrm{H}_{2}^{+} \text {functions. }
$$

e.g. for ground state $\mathrm{H}_{2}, \Psi_{0}=\Psi_{+}(1) \Psi_{+}(2) \frac{1}{\sqrt{2}}[\alpha \beta-\beta \alpha]$ where $\quad \psi_{+} \psi_{+}=\frac{1}{2(1+S)}\left[\psi_{\mathrm{a}} \psi_{\mathrm{a}}+\psi_{\mathrm{b}} \psi_{\mathrm{b}}+\psi_{\mathrm{a}} \psi_{\mathrm{b}}+\psi_{\mathrm{b}} \psi_{\mathrm{a}}\right]$ ionic $\mathrm{H}^{+} \mathrm{H}^{-}+\mathrm{H}^{-} \mathrm{H}^{+}$covalent

Ionic configurations are weighted too highly!
Configuration Interaction corrects this by mixing in some excited states, such as $\sigma^{*} \sigma^{*}$

$$
\Psi_{\mathrm{CII}}=\frac{1}{2(1+S)}\left[\psi_{+} \psi_{+}+\lambda \psi_{-} \psi_{-}\right] \Phi_{\text {spin }}
$$

Treat $1 / r_{12}$ as a perturbation to the simplified problem:

$$
E=2 E\left(\mathrm{H}_{2}^{+}\right)+\left\langle\Psi_{0}\right| \frac{1}{\gamma_{2}}\left|\Psi_{0}\right\rangle-1 / R_{\mathrm{ab}}
$$

Bond Formation in M.O. Theory

The results of calculations on simple molecules can be extended as general rules to more complicated systems. Thus, to form a strong bond:

- Orbitals must have the same symmetry with respect to rotation about the internuclear axis. Otherwise $S=0$
- Orbitals must not be too small or too diffuse. Otherwise S will be too small. Valence shell electrons are most effective, with strengths roughly $\sigma>\pi>\delta$
- Orbitals must be of similar energy. Otherwise...

If $\left|\alpha_{A}-\alpha_{B}\right|$ is large, and S is small,

$$
\begin{aligned}
& \left|\begin{array}{cc}
\alpha_{\mathrm{A}}-E & \beta-S E \\
\beta-S E & \alpha_{\mathrm{B}}-E
\end{array}\right|=0 \\
& E \approx \alpha_{\mathrm{A}}+\frac{\beta^{2}}{\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}}, \alpha_{\mathrm{B}}-\frac{\beta^{2}}{\alpha_{\mathrm{A}}-\alpha_{\mathrm{B}}} \\
& \quad \simeq E_{\mathrm{A}}+\text { (small term) }, E_{\mathrm{B}}+(\text { small term })
\end{aligned}
$$

Molecular Orbitals of Diatomics

Homonuclear Diatomics

Molecular orbitals are classified as $\sigma, \pi, \delta, \phi$ according to their symmetry as viewed along the internuclear axis.
If the wavefunction changes sign upon inversion through a centre of symmetry, the orbital is labelled u ungerade; If the wavefunction does not change sign it is g gerade .

An atomic orbital that remains relatively unperturbed in a molecule (e.g. a lone pair) is labelled n non-bonding.

Relative energies

Homonuclear Diatomics - 2
Li_{2}
Be_{2}
B_{2}
C_{2}
N_{2}
O_{2}
F_{2}

All the above also have $1 \mathrm{~s}\left(\sigma_{\mathrm{g}}\right)^{2}\left(\sigma_{\mathrm{u}}{ }^{*}\right)^{2}$

