The Variation Principle

The energy calculated using an approximate wavefunction
cannot be less than the true energy of the system.
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Note: There are other types of variational parameters, in
addition to coefficients of linear combination.



H,* : LCAO-MO Approach

Linear Combination of Atomic Orbitals

H3: H=-1R2- =- =+ = only one electron

Assume Y =c,a+cb where a, b areH 1swavefunctions
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where a =(a|H|a)=(b|H|b) aCoulomb integral

b=(a|H|b)=(b|H|a) aresonanceintegral
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H,* : LCAO-MO Approach — 2

The Variation Principle is used to find the optimum ¢, and ¢,

setting E:O-[-J
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These equations can be solved by using the normalization
condition: (Y|Y)=ci+2cc,S+c =
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H, : LCAO-MOQO Approach
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Start by ignoring 1/r ;, (independent €l ectron approach):

Y »y,Qy(QDFg,  wherey; areH; functions.
e.g. for ground state H,, Y, =y . Dy .(2)%[ab- ba]
where y+y+:z(l—is)[yaya+ybyb+¥ayb+ybyi]

'
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lonic configurations are weighted too highly!

Configuration Interaction corrects this by mixing in some
excited states, such ass*s*
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Treat 1/r , as a perturbation to the ssmplified problem:
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Bond Formation in M.O. Theory

The results of calculations on simple molecules can be
extended as general rulesto more complicated systems.
Thus, to form a strong bond:

" Orbitals must have the same symmetry with respect to
rotation about the internuclear axis. Otherwise § =0

" Orbitals must not be too small or too diffuse
Otherwise S will betoo small. Valence shell e ectrons

are most effective, with strengthsroughly s >p>d
" Orbitals must be of similar energy. Otherwise...

If |an- ag| islarge and S issmall,
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Molecular Orbhitals of Diatomics
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Homonuclear Diatomics

Molecular orbitals are classified as s, p, d, f according to
their symmetry as viewed along the internuclear axis.

If the wavefunction changes sign upon inversion through a
centre of symmetry, the orbital islabelled u ungerade;

If the wavefunction does not change signitis g gerade.

An atomic orbital that remains relatively unperturbed in a
molecule (e.g. alone pair) islabelled n non-bonding.
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Homonuclear Diatomics— 2

All the above also have 1s (s g)2 (S ,%)?
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