
The Variation Principle
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The energy calculated using an approximate wavefunction
cannot be less than the true energy of the system.
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Note:  There are other types of variational parameters, in
addition to coefficients of linear combination.
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H2
+ : LCAO-MO Approach

Linear Combination of Atomic Orbitals
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H2
+ : LCAO-MO Approach – 2

The Variation Principle is used to find the optimum ca and cb:
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These equations can be solved by using the normalization
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H2 : LCAO-MO Approach
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Start by ignoring 1/r12 (independent electron approach):
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ĥ  

 H

  

p
+
2s in(1) (2)  where are H   f unctions.i j iΨ ≈ ψ ψ Φ ψ

[ ]2
1

0 + + 2
e.g. for ground state H ,   (1) (2)Ψ = ψ ψ αβ−βα

Treat 1/r12 as a perturbation to the simplified problem:

Ionic configurations are weighted too highly!

Configuration Interaction corrects this by mixing in some
excited states, such as σ*σ*
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Bond Formation in M.O. Theory

♦ Orbitals must have the same symmetry with respect to
rotation about the internuclear axis.   Otherwise S = 0

♦ Orbitals must not be too small or too diffuse.
Otherwise S will be too small.  Valence shell electrons

are most effective, with strengths roughly  σ > π > δ

♦ Orbitals must be of similar energy. Otherwise...
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The results of calculations on simple molecules can be
extended as general rules to more complicated systems.
Thus, to form a strong bond:

EA EB

m.o.

m.o.*
EA

EB
m.o.

m.o.*



Molecular Orbitals of Diatomics
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Homonuclear Diatomics

Molecular orbitals are classified as  σ, π, δ, φ  according to

their symmetry as viewed along the internuclear axis.

If the wavefunction changes sign upon inversion through a

centre of symmetry, the orbital is labelled  u   ungerade;

If the wavefunction does not change sign it is  g  gerade.

An atomic orbital that remains relatively unperturbed in a

molecule (e.g. a lone pair) is labelled  n   non-bonding.
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Homonuclear Diatomics – 2

 Li2 Be2 B2 C2 N2 O2 F2
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All the above also have 1s (σg)2 (σu*)2


