
M.O. Treatment of Polyatomics
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If the Hamiltonian is separated into a sum of one - electron
operators, 21

eff2Ĥ V= − ∇ +

a difficult problem involving n electrons can be rewritten as a
set of simpler problems each involving one electron.
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In all, there are n molecular orbitals, each with n terms.
For a non-trivial solution of these n simultaneous equations,

secular determinanĤ 0 tji jiE− =S

Expansion of the determinant gives an nth order equation,
which has n roots, i.e. n possible values of E.
Substituting a value of E into the secular equations results in a
set of simultaneous equations which can be solved for ci.



Hückel M.O. Theory
Mostly used for carbon π electron systems; the σ electrons
determine the molecular geometry (carbon skeleton).

1
2p L.C. orbiA. tals, one per CO  .
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Hückel Approximations

Zero overlap for orbitals on different atoms.
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Hückel Calculation for Butadiene
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Hückel Calculation for Butadiene – 2
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4n+2 electrons is the most stable, e.g. C5H5
– is better than C5H5.

Hückel Applications
Hückel Energy total
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tot tot   4 4.48  2e.g. for butadiene , for e 2theneE E= α + β = α + β
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Hückel Applications – 2

Alternant Hydrocarbons for conjugaged π systems
C atoms can be divided into two sets (e.g. with and without stars)
such that no two members of the same set are bonded together.
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Naphthalene Biphenylene Benzyl radical

Not:

Azulene Acenaphthylene

For alternant hydrocarbons, the energy levels of bonding and
anti-bonding orbitals are arranged symmetrically about α.

The π-electron density is distributed equally over the carbons
in the ground state, i.e. the molecules are non-polar.
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e.g. for butadiene,  P12 = 0.89, P23 = 0.45.



Numerical Methods in Quantum Mechanics

Correlation Energy

Even a perfect SCF-HF calculation gives an answer too high by
an amount called the correlation energy, because local e–e
interactions are not considered, only average fields.

Configuration Interaction

Mixing in other electron configurations (excited states), using
the Variation Principle.

Ab initio  calculations start from scratch, consider all electrons
and interactions… but then have to solve by approximation.

Semi-empirical  calculations start with approximations so that
the problem is relatively easy to handle.

Self-consistent field – Hartree and Fock
1. Start with orbital approximation for ψ but for each electron

write the Schrödinger equation using a constant Vee to
represent the electron repulsion from all other electrons:

Solve for ψ3s.
2. Repeat for all other orbitals.
3. Redo ψ3s problem (step 1) using the improved value of  Vee

calculated using the solutions to step 2.
4. Do as many cycles as necessary until ψ3s etc. are consistent.
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Comparison of M.O. and V.B. Methods

! Both predict increased electron density between bound states.

! Both start with atomic orbitals but combine them in different
ways:

! Both require paired electron spins in the bond (Pauli Principle).

!M.O. theory predicts states; electrons are then added (Aufbau).
V.B. starts with electron-pair bonds and builds up structures.

!M.O. electrons are naturally delocalized over a number of
atoms, although a particular orbital may be localized.
V.B. uses resonant structures to achieve delocalization.

!M.O. wavefunctions overemphasize ionic terms; configuration
interaction is used to correct this.
V.B. wavefunctions naturally ignore ionic terms, but ionic
structures can be included.

! V.B. needs hybridization to explain molecular shapes.
In M.O., hybridization is simply L.C.A.O. on a single centre.

!M.O. uses the SCF method to accommodate orbital distortion
as electrons are added to states – easily handled by computer.
V.B. calculations involve more complicated integrals, and a
large number of resonant structures.
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