
Wavefunctions
Wavefunctions are…

From classical physics, 

The wavefunction Ψ(r,t) for a system is a solution of the
Schrödinger equation, a differential equation for the spatial (r)
and temporal (t) behaviour of de Broglie waves.

Ψ contains all information about the dynamical properties of the

system.  In principle, all observable properties may be deduced

by performing the appropriate mathematical operation on Ψ.

Ψ(r,t) is a function of time and all the coordinates of all the

particles that make up the system.

Ψ(r,t) can be interpreted as the amplitude of the probability

density for the spatial description of the system.

... “Matter Waves”

( ) exp( 2 / ) cos(2 / ) sin(2 / )x i x x i xψ = π λ = π λ + π λ

is a wave propagating in the positive x direction.

Using de Broglie’s relation for a particle, /h pλ =

( ) exp( / ) / 2x ipx hψ = = πh h

… Solutions of the Schrödinger Equation



Properties of Wavefunctions

For a single particle wavefunction , ψ(r)

the probability density of the particle at r is  |ψ |2 = ψ*ψ

i.e. probability of finding particle in region dx is ψ*(x)ψ(x)dx

 or volume dτ is ψ*(τ)ψ(τ)dτ

An acceptable wavefunction is …

continuous

single valued

finite everywhere

usually also / q∂ψ ∂

actually *ψ ψ

* d 1ψ ψ τ =∫

These limitations force ψ to obey boundary conditions

which result in quantization

i.e. only some solutions of the Schrödinger equation survive.

A wavefunction is normalized

Two wavefunctions ψ1 and ψ2 are orthogonal

   * dif 1ψ ψ τ =∫

1 2   * di 0f ψ ψ τ =∫



The Schrödinger Equation
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This equation is separable in ψ and φ :
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h     is a stationary state, because:

is independent of time

The time-independent S equation



The Free Particle
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The translational motion of a single free particle moving in
1 dimension is described by

n n/ /or in general, e eip x ip xA B+ −+h h

This represents an oscillation with wavelength h/p, since

An operator.

Set V=0 in Schrödinger eqn.

{ }exp / cos(2 / ) sin(2 / ), /ipx x i x h p± = π λ ± π λ λ =h

n labels different solutions

Momentum, p, is associated with the first derivative of ψ

Kinetic energy, E, with the second derivative of ψ

For a given energy, En,   ψ* ψ = C2     a constant.



The Particle in a 1-D Box

“box” = square well potential
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⇒  The particle is confined to the box (potential well).

Within the walls the situation is identical to the free particle...

n n/ /
nn ni.e, or cos( / ) sin( / )e eip x ip x C p x D p xA B+ −ψ = + +h h h h

… until boundary conditions are applied.



The Particle in a 1-D Box continued

Boundary conditions impose quantization.

n n ncos( / ) sin( / )C p x D p xψ = +h h
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n is called the
quantum number

The value of D is found by normalizing the wavefunction:
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The Particle in a 1-D Box – Solutions
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Larger n and/or smaller a means sharper “wiggles”

→  higher momentum and kinetic energy.
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Wavefunctions of different energy (different n) are orthogonal.
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Molecular Energy Levels

   Electronic Vibrational  Rotational Translational

  UV + visible        IR  microwave        ~0

λ:  10-9 - 10-6 m  10-6 - 10-4 m  10-4 - 10-2 m      → ∞

very long λ used in radio frequency spectroscopy

very short λ gamma rays used to probe nuclear energy levels

NMR



Spectroscopy – Fundamentals

Frequency

Wavelength

Wavenumber

1 micron = 1 µm= 10-6 m

1 Å = 0.1 nm = 10-10 m

c = 2.998 × 1010 cm s-1

h = 6.626 × 10-34 J s

7 = h/2π
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Emission and absorption spectroscopy are resonant processes.

h Eω = ν = ∆h

The intensities of spectral lines depend on…

population of states

Boltzmann distribution

transition probability

specific selection rules often depend on symmetry

path length and concentration

Beer-Lambert Law
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