Wavefunctions

Wavefunctions are...

> ... "Matter Waves"

From classical physics,

$$
\psi(x)=\exp (i 2 \pi x / \lambda)=\cos (2 \pi x / \lambda)+i \sin (2 \pi x / \lambda)
$$

is a wave propagating in the positive x direction. Using de Broglie's relation for a particle, $\quad \lambda=h / p$

$$
\psi(x)=\exp (i p x / \hbar) \quad \hbar=h / 2 \pi
$$

... Solutions of the Schrödinger Equation
The wavefunction $\Psi(\mathrm{r}, \mathrm{t})$ for a system is a solution of the Schrödinger equation, a differential equation for the spatial (r) and temporal (t) behaviour of de Broglie waves.
Ψ contains all information about the dynamical properties of the system. In principle, all observable properties may be deduced by performing the appropriate mathematical operation on Ψ.
$\Psi(\mathrm{r}, \mathrm{t})$ is a function of time and all the coordinates of all the particles that make up the system.
$\Psi(\mathrm{r}, \mathrm{t})$ can be interpreted as the amplitude of the probability density for the spatial description of the system.

Properties of Wavefunctions

For a single particle wavefunction, $\psi(r)$ the probability density of the particle at r is $|\psi|^{2}=\psi^{*} \psi$
i.e. probability of finding particle in region $\mathrm{d} x$ is $\Psi^{*}(x) \psi(x) \mathrm{d} x$ or volume $\mathrm{d} \tau$ is $\psi^{*}(\tau) \psi(\tau) \mathrm{d} \tau$

An acceptable wavefunction is ...

continuous	usually also $\partial \psi / \partial q$
single valued	actually $\psi^{*} \psi$
finite everywhere	$\int \psi^{*} \psi \mathrm{~d} \tau=1$

These limitations force ψ to obey boundary conditions which result in quantization
i.e. only some solutions of the Schrödinger equation survive.

A wavefunction is normalized if $\int \psi^{*} \psi \mathrm{~d} \tau=1$
Two wavefunctions ψ_{1} and ψ_{2} are orthogonal if $\int \psi_{1} * \psi_{2} \mathrm{~d} \tau=0$

The Schrödinger Equation

$$
\begin{aligned}
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi+V \Psi & =i \hbar \frac{\partial}{\partial t} \Psi \\
\text { or } \hat{H} \Psi & =i \hbar \frac{\partial}{\partial t} \Psi
\end{aligned}
$$

del squared $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=$ the Laplacian
Assume

$$
\Psi(r, t)=\psi(r) \phi(t) \quad \text { and } \quad V=V(r)
$$

then $\quad-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(r) \phi(t)+V(r) \psi(r) \phi(t)=i \hbar \psi(r) \frac{\mathrm{d} \phi(t)}{\mathrm{d} t}$
i.e. $\quad-\frac{\hbar^{2}}{2 m \psi} \nabla^{2} \psi+V(r)=\frac{i \hbar}{\phi} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}$

This equation is separable in ψ and ϕ :

$$
\left.\begin{array}{r}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi \\
i \hbar \frac{\mathrm{~d} \phi}{\mathrm{~d} t}=E \phi
\end{array}\right\} \begin{array}{r}
\hat{\mathrm{H}} \psi=E \psi \\
\text { The time-independ } \\
\phi(t)=C \mathrm{e}^{-\mathrm{EE} / \hbar}
\end{array}
$$

$$
\text { The time-independent } S \text { equation }
$$

$\Psi(r, t)=C \psi(r) \mathrm{e}^{-\mathrm{E} \mathrm{E} / \hbar} \quad$ is a stationary state, because:
$\Psi * \Psi=C^{2} \Psi^{*} \Psi \quad$ is independent of time

The Free Particle

The translational motion of a single free particle moving in 1 dimension is described by

$$
\begin{array}{rlrl}
\hat{\mathrm{H}} & =-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}} & \text { An operator } \\
\hat{\mathrm{H}} \psi_{\mathrm{n}} & =E_{\mathrm{n}} \psi_{\mathrm{n}} & \text { Set } V=0 \text { in } \mathrm{S} \\
\frac{\mathrm{~d}^{2} \psi_{\mathrm{n}}}{\mathrm{dx}^{2}} & =\left(\frac{-2 m E_{\mathrm{n}}}{\hbar^{2}}\right) \psi_{\mathrm{n}} & \text { n labels diff } \\
\Psi_{\mathrm{n}} & =C \mathrm{e}^{i k x}, \quad k^{2}=2 m E_{\mathrm{n}} / \hbar^{2}=p_{\mathrm{n}}^{2} / \hbar^{2} \\
\Psi_{\mathrm{n}} & =C \mathrm{e}^{ \pm i_{\mathrm{n}} x / \hbar} &
\end{array}
$$

or in general, $A \mathrm{e}^{+i p_{n} x / \hbar}+B \mathrm{e}^{-i p_{n} x / \hbar}$
This represents an oscillation with wavelength h / p, since

$$
\exp \{ \pm i p x / \hbar\}=\cos (2 \pi x / \lambda) \pm i \sin (2 \pi x / \lambda), \quad \lambda=h / p
$$

For a given energy, $E_{\mathrm{n}}, \quad \Psi^{*} \psi=C^{2} \quad$ a constant.

Momentum, p, is associated with the first derivative of ψ Kinetic energy, E, \quad with the second derivative of ψ

The Particle in a 1-D Box

By extrapolation from the free particle wavefunction, $\psi=C \exp \left\{i[2 m(E-V)]^{1 / 2} x / \hbar\right\} \quad$ inside the box
$=C \exp \left\{-[2 m(V-E)]^{1 / 2} x / \hbar\right\}$ for $V>E \quad$ outside the box
$\rightarrow 0$ as $V \rightarrow \infty$
\Rightarrow The particle is confined to the box (potential well).

Within the walls the situation is identical to the free particle...
i.e, $\Psi_{\mathrm{n}}=A \mathrm{e}^{+i p_{\mathrm{n}} x / \hbar}+B \mathrm{e}^{-i p_{\mathrm{n}} x / \hbar}$ or $\quad C \cos \left(p_{\mathrm{n}} x / \hbar\right)+D \sin \left(p_{\mathrm{n}} x / \hbar\right)$
... until boundary conditions are applied.

The Particle in a 1-D Box continued

$$
\psi_{\mathrm{n}}=C \cos \left(p_{\mathrm{n}} x / \hbar\right)+D \sin \left(p_{\mathrm{n}} x / \hbar\right)
$$

$$
\text { At } x=0, \psi=0 \quad \Rightarrow \quad C=0
$$

$$
\text { At } x=a, \psi=0 \quad \Rightarrow \quad D \sin \left(p_{\mathrm{n}} x / \hbar\right)=0 \text {; i.e. } p_{\mathrm{n}} a / \hbar=n \pi
$$

$$
\begin{array}{ll}
\Psi_{\mathrm{n}}=D \sin (n \pi x / a) & n=1,2,3, \ldots \\
\mathrm{E}_{\mathrm{n}}=\frac{p_{\mathrm{n}}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} & n=1,2,3, \ldots
\end{array}
$$

Boundary conditions impose quantization.

The value of D is found by normalizing the wavefunction:

$$
\begin{gathered}
\int \Psi_{\mathrm{n}} * \Psi_{\mathrm{n}} \mathrm{~d} \tau=1 \\
D^{2} \int_{0}^{a} \sin ^{2}(n \pi x / a) \mathrm{d} x=\frac{1}{2} a D^{2}=1 \\
\Rightarrow D=\left(\frac{2}{a}\right)^{1 / 2} \\
\psi_{\mathrm{n}}=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)
\end{gathered}
$$

The Particle in a 1-D Box - Solutions

Energy Levels $\quad \mathrm{E}_{\mathrm{n}}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$ $n=1,2,3, \ldots$

Energy

As $a \rightarrow \infty$, $\Delta E=E_{\mathrm{n}+1}-E_{n} \rightarrow 0$,
E becomes a

continuous function

If a decreases,
E and ΔE
become larger

Wavefunctions $\quad \psi_{\mathrm{n}}=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)$
Larger n and/or smaller a means sharper "wiggles"
\rightarrow higher momentum and kinetic energy.
Wavefunctions of different energy (different n) are orthogonal.

$$
\text { e.g. } \int_{0}^{a} \psi_{1} \psi_{2} \mathrm{~d} x=\left(\frac{2}{a}\right) \int_{0}^{a} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) \mathrm{d} x=0
$$

Molecular Energy Levels

Spectroscopy - Fundamentals

Frequency
$v \mathrm{~Hz}\left(\mathrm{~s}^{-1}\right)$

$$
\omega=2 \pi \nu \quad \operatorname{rad~s}^{-1}
$$

Wavelength

$$
\begin{array}{ll}
\lambda=\frac{c}{v} \mathrm{~m} & 1 \text { micron }=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
& 1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}
\end{array}
$$

Wavenumber

$$
\begin{array}{rlr}
\bar{v} & =1 / \lambda & \mathrm{cm}^{-1} \\
& =\frac{v}{c} & \left(\mathrm{~Hz}^{-1}\right)
\end{array}
$$

$$
c=2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}
$$

Emission and absorption spectroscopy are resonant processes.

$$
\begin{array}{ll}
\hbar \omega=h \nu=\Delta E \quad & h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& \hbar=h / 2 \pi
\end{array}
$$

The intensities of spectral lines depend on...
population of states
Boltzmann distribution

$$
\frac{N_{\text {upper }}}{N_{\text {lower }}}=\exp (-\Delta E / k T)
$$

transition probability specific selection rules often depend on symmetry
path length and concentration Beer-Lambert Law

$$
\frac{I}{I_{0}}=\exp (-\varepsilon[\mathrm{M}] l)
$$

