
The Particle in a 2-D Box
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The Particle in a 2-D Box – Solutions
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The Particle in a 2-D Box – Degeneracy

Degeneracy   occurs whenever one function can be changed 
into another by a symmetry transformation of the system.

Consider the square well (a = b).
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Operators
An operator changes a function into another in a specific 
manner:

Not all the usual rules of algebra apply to operators!
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Construction of Q.M. Operators
• Write the classical expression for the observable of 

interest in terms of space coordinates, linear momenta and 
time.

• Linear coordinates and time are unchanged.

• Replace linear momentum      by         .

• The operator for the total energy  is                  .
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Expectation Values

Ψ = +c c1 1 2 2ψ ψ

The expectation value of the operator Ω is defined by

Ω Ω= zψ ψ τ* $ d Ψ is assumed to be normalized:

If Ψ is an eigenfunction of Ω: $Ωψ ωψ=

Ω = = =z zψ ωψ τ ω ψ ψ τ ω* *d d

Every measurement of the property Ω gives the eigenvalue ω.

Suppose  Ψ is not an eigenfunction of  Ω.
It can be expressed as a linear combination of eigenfunctions, e.g.:
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A single measurement gives ω1 or ω2.  
A series of measurements gives the weighted average.



There exist pairs of observables whose values may not be known 
simultaneously to better precision than a certain constant.

e.g.  position  q and linear momentum  pq

energy and lifetime

The Uncertainty Principle is a consequence of the probabilistic 
interpretation of ψ.  Even if ψ is known exactly it is only possible 
to calculate the probability of finding it in a given region of 
space.

Suppose the momentum of a moving particle is known exactly:
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Suppose the position of the particle is known precisely,  
i.e. the probability density peaks at a point.  

Such localization is described by a wave packet formed by the 
superposition of many waves with a large spread of frequencies.
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Tunnelling
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Application of boundary conditions gives the transmission probability:

ikx ikxA e B e−′ ′ψ = +

Tunnelling depends on the mass of the particle, its energy (compared to 
the barrier), and the width of the barrier.

Consider a particle of energy E striking a potential barrier of height V.



Tunnelling in Chemical Reactions

Sometimes reactions occur even if the reactants have E < Eact.

This is tunnelling, a consequence of the wave nature of matter.

The transmission coefficient G depends on E-V, the barrier 
width, and the particle mass.
Tunnelling is only important for light particles (H, Mu, e–). 
This is because they have a large spread in their wave packets.
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