Spin

Just what does that 4th quantum number represent?

* Introduced empirically to explain certain features of atomic spectra (1925).
* Theory developed by Pauli and shown to be a consequence of the Dirac equation.
* It is the intrinsic, characteristic and irremovable angular momentum of a particle.
You can visualize it as the rotation of a body about its own axis, but... what about point particles?
* It is a non-classical phenomenon! In contrast, orbital angular momentum \rightarrow classical behaviour at high enough l values.
* All matter can be classified according to spin:

Fermions have half-integral spins $(1 / 2,3 / 2,5 / 2, \ldots n+1 / 2)$ and satisfy Fermi-Dirac statistics.

Bosons have integral spin $(0,1,2, \ldots)$ and satisfy Bose-Einstein statistics

Experimental Evidence for Spin

* Fine structure
* Zeeman effect $\}$ in atomic spectra

Hyperfine structure
Alternating intensities in the rotational structure of vibration bands of centrosymmetric molecules.

Magnetic resonance spectroscopy - ESR and NMR The Stern-Gerlach Experiment:

In an inhomogeneous magnetic field
${ }^{2} S_{1 / 2} \quad \mathrm{Ag}^{0}$

The beam of silver atoms splits into two.

The first experiment gave the classical result of an even distribution.
The beam intensity was high enough that collisions between atoms scattered the beam.

Magnetic Moments in Atoms and Molecules

Angular momentum can arise from:

- orbital motion of electrons \vec{L}
- electron spin $\stackrel{\rightharpoonup}{S}$
- nuclear spin \vec{I}

In general, for an angular momentum quantum number j

$$
\begin{aligned}
& \text { magnitude }=[j(j+1)]^{1 / 2} \hbar \\
& z \text {-component }=m_{j} \hbar \quad m_{j}=j, j-1, \ldots-j
\end{aligned}
$$

The interaction of the orbital or spin angular momentum with a magnetic field is characterized by the magnetic moment.

$$
E=-\vec{\mu} \cdot \stackrel{\rightharpoonup}{B}=-\mu_{z} \cdot B_{z} \quad \stackrel{\rightharpoonup}{B}=\left(0,0, B_{z}\right)
$$

orbital

$$
\mu_{z}=\gamma_{\mathrm{e}} m_{l} \hbar=-\beta m_{l}
$$

electron spin

$$
\mu_{z}=g_{\mathrm{e}} \gamma_{\mathrm{e}} m_{S} \hbar=-g_{\mathrm{e}} \beta m_{S}
$$

nuclear spin

$$
\mu_{z}=\gamma_{\mathrm{N}} m_{I} \hbar=g_{\mathrm{N}} \beta_{\mathrm{N}} m_{I}
$$

magnetogyric ratio $\gamma_{\mathrm{e}}=-\frac{e}{2 m_{\mathrm{e}}} \quad g$-value $=2.0023$
Bohr magneton $\beta=\frac{e \hbar}{2 m_{\mathrm{e}}} \quad$ nuclear magneton $\quad \beta_{\mathrm{N}}=\frac{e \hbar}{2 m_{\mathrm{p}}}$

Electrons and Nuclei in a Magnetic Field

Electron spin

$$
E_{m_{S}}=g_{\mathrm{e}} \beta B_{z} m_{S} \quad m_{S}= \pm \frac{1}{2}
$$

selection rule: $\quad \Delta m_{S}= \pm 1$

0 B_{z}
X band $\quad 9.5 \mathrm{GHz} \leftrightarrow 3.4 \mathrm{kG}$
0.34 T
Q band $\quad 35 \mathrm{GHz} \leftrightarrow 12.5 \mathrm{kG}$

Nuclear spin $\quad E_{m_{I}}=-\gamma_{\mathrm{N}} \hbar B_{z} m_{I} \quad$ selection rule: $\quad \Delta m_{I}= \pm 1$
spin $1 / 2$ nucleus

spin 1 nucleus

ESR - Experimental Aspects

Microwaves: generated by klystron oscillators, Gunn diodes conducted by waveguides

* Sample mounted in a resonant cavity - a metal box of precise dimensions tuned to be part of a microwave bridge and designed to favour a particular standing wave pattern.
* Absorption of microwaves by the sample at resonance unbalances the bridge, changing the output of a rectifying crystal detector in another arm of the bridge.
* Resonance found by sweeping field and keeping frequency constant. The spectrum is recorded as a function of field (in gauss), but spectral features should be described in MHz.
* Signal-to-noise (S / N) is improved by field modulation with phase sensitive detection. For a modulation amplitude smaller than the line width, the recorded spectral lineshape has a derivative-like shape:

ESR Hyperfine Splitting

Interaction of the unpaired electron of a radical with magnetic nuclei $(\mathrm{H}, \mathrm{N}, \ldots)$ results in hyperfine splitting of ESR resonances.

Each nuclear spin contributes a local magnetic field depending on its m_{I} value. Thus, the protons in H atoms can have $m_{I}= \pm \frac{1}{2}$ resulting in two different local fields in addition to B_{0}.

D atoms have $I=1$,
\Rightarrow three orientations:

ESR Hyperfine Splitting - 2

Spin Hamiltonian

$$
\begin{aligned}
\hat{\mathrm{H}}= & g_{\mathrm{e}} \beta B_{z} \hat{\mathrm{~S}}+a \hat{\mathrm{I}} \cdot \hat{\mathrm{~S}} \\
\simeq & g_{\mathrm{e}} \beta B_{z} \hat{\mathrm{~S}}_{z}+a \hat{\mathrm{I}}_{z} \cdot \hat{\mathrm{~S}}_{z} \\
& \text { Zeeman } \quad \text { Hyperfine } \\
E= & g_{\mathrm{e}} \beta B_{z} m_{S}+a m_{S} m_{I}
\end{aligned}
$$

selection rules: $\quad \Delta m_{S}= \pm 1, \Delta m_{I}=0$

$$
h \nu=\Delta E=g_{\mathrm{e}} \beta B_{z} \pm a m_{I}
$$

Hyperfine Splitting by Many Nuclei

Most radicals contain more than one magnetic nucleus.
Each couples to the unpaired electron to produce its own splitting.

Equivalent nuclei with total spin I give $2 I+1$ lines.
Thus, n equivalent spin- $1 / 2$ nuclei (e.g. protons) couple to give a spectrum of $n+1$ lines. Their relative
 intensities are given by the binomial coefficients of $(1+x)^{n}$.

Pascal's triangle.

- $\mathrm{CH}_{2} \mathrm{OH}$

ESR of Organic Radicals - Examples

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{h \nu}$?

