
Independent Electron Theory of Atoms
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H1 = H atom-like 
Hamiltonian

The Schrödinger Equation can not be solved exactly for this case.
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Multi-Electron Atoms

Aufbau Principle Periodic Table

• Treat the electrons as if they were independent of each other.

• Each electron is described by the same set of 4 quantum 
numbers that is used to describe H atom states.

• The relative arrangement of energy levels is approximately 
that of the H atom:

1s < 2s < 2p < 3s < 3p < 3d ~ 4s < 4p

• Electrons are arranged in the lowest possible energy levels 
consistent with the Pauli Principle.

Pauli Principle (elementary version)

No two electrons may have the same set of four quantum 
numbers.

Objections

1.   The orbital approximation implies non-interacting particles.
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The Pauli Principle

Wave functions for half-integral spin particles (fermions) 
must be antisymmetric upon permutation of the coordinates 
of any two particles.

(symmetric for bosons)

An acceptable wavefunction is the antisymmetric combination:

Each independent electron wavefunction has a space and a 
spin part:

There are four simple product functions for He:

1s 1s 1s (r( ) )or rψ = φ α φ β

None of these 
obey Pauli.
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Slater devised a general method of constructing acceptable 
wavefunctions from determinants.



Spin Orbit Coupling:
Fine Structure in Atomic Spectra

Selection rules: ∆n = any integer, ∆l = ±1, ∆j = 0, ±1

Electrons in atoms have both: 
orbital angular momentum spin angular momentum

l = 0, 1, 2, … s = ½

m (lz) = 0, ±1, ±2, … ±l ms (sz) = ± ½

which interact by spin-orbit coupling vectors
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Fine structure splitting

The very small difference 
between these states is known 
as the Lamb shift.



Quantum Numbers of Many-Electron Atoms

2 2
tot tot

2 2
tot tot

z tot tot

z tot tot

ˆ ( 1)

ˆ ( 1)

ˆ , 1,... ( 1),

ˆ , 1,... ( 1),

L L

S S

L L L

S S S

L M M L L L L

S M M S S S S

Ψ = + Ψ

Ψ = + Ψ

Ψ = Ψ = − − − −

Ψ = Ψ = − − − −

!

!

!

!

single electrons: n l m s ms

many-e atoms: L ML S MS

Russell-Saunders coupling of orbital and spin angular momenta

⇒ total angular momentum characterized by J
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Term Symbols are shorthand descriptions of multi-electron 
states

Closed shells have L = 0 and S = 0 so the term symbol is always 1S

X
J

MJ2S+1
multiplicity

State (not always used)

level

X = S P D F
for L =  0 1 2 3



Calculation of Term Symbols
In general, a given electron configuration can give rise to 
several different terms – the electrons can couple their 
orbital and spin angular momenta in different ways.

To find S

To find L
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Easier way to find L

Calculate for all possible combinations of possible 
values of ml.  Then infer the allowed values of L from groups of ML.

( )L l i
i

M m=∑

To find J
values if 
va

, 1, 2, ...
2 1   L
2 1 lues  if  L

J L S L S L S L S
S S
L S

= + + − + − −

+
+

!
"

1 0 1

1 2 1 0

0 1 0 1

1 0 1 2

− +

− − −

− +

+ + +

L = 1 P

L = 0 S

L = 2 D

e.g. l1 = 1, l2 = 1. Find L



Calculation of Term Symbols – 2

Inequivalent electrons different orbitals
Find L; find S; consider all combinations.
e.g. (1s2 2s2) 2p 3p The closed shell is ignored since S = L = 0

Equivalent electrons same orbitals
Some combinations of L and S are restricted by the Pauli 
Principle,
e.g.  If two electrons have the same n, l, and ml ...

... then they can’t have identical ms.

Complementary configurations
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Thus, (1s2 2s2) 2p2 gives only 1D, 3P, and 1S terms.
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i.e. work the problem for k electrons or n-k, whichever is 
easier – the terms are the same.



Relative Energies of Terms:
There is no simple way to predict the order of energies of 
multi-electron terms.  However the ground state (lowest 
energy state) can be predicted by:

Hund’s Rules

1. The ground state of the lowest electron configuration has 
the maximum spin multiplicity (largest S).  

2. Of the terms with maximum multiplicity, the one with 
lowest energy has the largest L. 

3. If the electron shell is... 
less than half-filled, the smallest J has the lowest energy
more than half-filled, the largest J has the lowest energy.

What about half-filled shells?
This has L = 0, so J = S, i.e. only one state.


