
Molecular Vibrations

In general, the vibrations of a polyatomic molecule involve

motion of all nuclei about the molecule’s centre of mass.

In some cases the normal modes of vibration can be approximated

by motion of individual pairs of nuclei, which can be treated as if

they are diatomic molecules.

To solve the Schrödinger Equation we need to know the potential

energy for the interaction between the two atoms.

The energy of a diatomic molecule varies with bond length:
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At rAB = ∞ the molecule AB

dissociates into atoms A and B

Near the minimum the curve is roughly parabolic, so bond vibrations

are often treated as if harmonic.

The asymmetric distortion from the parabola is called anharmonicity.



The Morse Potential
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The Simple Harmonic Oscillator

A harmonic oscillator has a restoring force proportional to the

deviation from equilibrium:   F = k x k is the force constant.

Examples:  simple pendulum, vibrating spring, bond vibration.
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The general solution is

where the are solu Hermite's Equation
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Simple Harmonic Oscillator – 2

Eigenfunctions

Eigenvalues 0(nE n= + ωh½)

• The energy levels are equally spaced by

• There is a zero-point energy of   .  .   .   . 0ωh½
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Note the similarity to the particle in a box wavefunctions.

A new feature is the penetration of the potential at low n.



The Anharmonic Oscillator

If the Schrödinger Equation is solved for the Morse potential the

vibrational energy levels converge as the quantum number rises:
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Vibrational Spectra of Diatomic Molecules

Selection rules

• The vibration must change the dipole moment.

Therefore, only heterodiatomics have IR spectra.

•  ∆n = ±1

In a harmonic system this would give only one transition

frequency: ∆E = 7ω = hν
For anharmonic systems

• The  ∆n = ±1  selection rule is relaxed in anharmonic systems;

 ∆n = ±2, ±3, … are “partially” allowed.

ν(0→1) is called the fundamental.

ν(0→2) and ν(0→3) are the first and second overtones.

Intensities

For typical molecules at room temperature

so most molecules are in the lowest vibrational state,

and give a single strong fundamental absorption frequency.

Overtone frequencies are much weaker.
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Rotation-Vibration Spectra of Diatomics
If intramolecular motion is treated as separable,

intra vib rot internal vib rotE E EΨ = Ψ Ψ = +
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Bracket Notation

Dirac proposed the bra-ket notation:
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Ω ≡ ψ Ωψ τ
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Kets may be interpreted as vectors in Hilbert space.

Operators behave like matrices.

can be regarded as a matrix element.ˆ
mn m nΩ ≡ Ω

Heisenberg developed a formulation of quantum mechanics

using the language of matrix algebra.

Commutator Notation

Commutator ˆ ˆ ˆˆ ˆ ˆA, B AB BA  ≡ − 


