CHEM 260

Assignment 10

Due Monday 24th March 2003

 Use check marks (✓) to indicate which molecules in the following table have active (i.e. one of more allowed spectroscopic transitions) microwave (pure rotation), infra-red (vibrational), rotational Raman, and vibrational Raman spectra.

	microwave	IR	Rotational Raman	Vibrational Raman
CO				
OCS				
HCCH				
F_2				
CF_4				
CH ₃ F				

- 32. N_2O in the gas phase has three strong IR absorption bands. The rotational fine structure indicates that the molecule is linear. What is the middle atom? Justify your answer (no credit for a guess).
- 33. A molecule with the general formula A_2B_2 has two IR absorptions (3287 and 729 cm⁻¹) and three vibrational Raman bands (3374, 1973 and 612 cm⁻¹). Deduce its structure (and guess its identity if you can) by considering the following:
 - a) Is the molecule linear or not?
 - b) Does it have a centre of symmetry?
 - c) Which bands correspond to stretching modes?
 - d) Which bands arise from bending modes?
- 34. The spacing between lines in the rotational Raman spectrum of H_2 is 119.2 cm⁻¹.
 - a) Calculate the bond length.
 - b) Predict the frequency (in cm⁻¹) of the second line in the rotational Raman spectrum of MuH.