CHEM 260

Assignment 11
Due $2^{\text {nd }}$ April 2003
35. Calculate the normalization factor N for the hybrid orbital

$$
\Psi=N\left\{\psi_{2 \mathrm{~s}}+\frac{1}{\sqrt{2}} \psi_{2 \mathrm{px}}+\sqrt{\frac{3}{2}} \psi_{2 \mathrm{py}}\right\} .
$$

and show that this orbital is orthogonal to

$$
\begin{aligned}
\Psi & =N\left\{\psi_{2 \mathrm{~s}}-\sqrt{2} \psi_{2 \mathrm{px}}\right\} \\
\text { and } \quad \Psi & =N\left\{\psi_{2 \mathrm{~s}}+\frac{1}{\sqrt{2}} \psi_{2 \mathrm{px}}-\sqrt{\frac{3}{2}} \psi_{2 \mathrm{py}}\right\} .
\end{aligned}
$$

36. Suggest an electron configuration for the cyanide ion, CN^{-}[Write it in the form $\left.(1 \mathrm{~s} \sigma)^{2}\left(1 \mathrm{~s} \sigma^{*}\right)^{2} \ldots\right]$. Is the ion diamagnetic or paramagnetic? What about the CN^{+}cation and the CN radical? Which of these three forms has the strongest bond? Explain.
37. Carry out a Hückel calculation for the π electron system of the allyl radical $\left[\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}\right]^{\circ}$ and thence calculate the molecular orbital energies in terms of the Hückel parameters α and β. Sketch and label an energy level diagram to show which molecular orbitals are occupied.
38. The atomic orbital coefficients from a Hückel calculation for the allyl radical are given below. Use this data to calculate (i) the unpaired spin distribution in the allyl radical; (ii) the charge distribution in the allyl cation.

	ϕ_{1}	ϕ_{2}	ϕ_{3}
ψ_{1}	0.500	0.707	0.500
ψ_{2}	0.707	0.000	0.707
ψ_{3}	0.500	-0.707	0.500

