CHEM 260

Assignment 9

Due Monday 17th March 2003

34. a) Given that the vibrational energy levels of a diatomic molecule are given by

$$E(n) = \hbar \omega_{\rm e} \left[\left(n + \frac{1}{2} \right) - x_{\rm e} \left(n + \frac{1}{2} \right)^2 \right],$$

write down an expression for $\Delta E(0 \rightarrow n)$ and thence deduce that

$$E(0 \to n) / n = \hbar \omega_{\rm e} \left[1 - x_{\rm e} \left(n + 1 \right) \right]$$

- b) The fundamental and first two overtone transitions for the molecular ion H_2^+ have frequencies 2191, 4255 and 6196 cm⁻¹. Plot this data using the above expression to find the vibrational frequency ($\hbar\omega_e$ in cm⁻¹) and the anharmonicity constant x_e .
- c) Substitute your answers from part b into the first equation to construct a table of E(n) for the lowest 20 or so vibrational energy levels of H_2^+ . Add another column to the table for the energy difference between levels, i.e. $\Delta E(n \rightarrow n+1)$ and thence deduce the number of vibrational levels below the dissociation limit.
- d) Calculate the zero-point energy of MuH⁺.
- 35. The following lines are found near the centre of the IR spectrum of D³⁵Cl: 2027.7, 2039.9, 2051.6, 2063.2, 2074.6, 2085.5, 2107.1, 2117.3, 2127.5, 2137.5, 2147.2, and 2156.8 cm⁻¹.
 - a) By looking at the differences between the frequencies decide which lines belong to the *P* branch and which the *R* branch. Sketch an energy level diagram showing them. Label them ..., P_2 , P_1 , (Q), R_1 , R_2 ,... Q represents the undetected pure vibrational transition.
 - b) Plot the frequencies (in cm^{-1}). For the *x*-axis use the above subscripts, but with negative numbers for the *P* branch. Fit the data with a parabola.
 - c) Use your fit (the intercept) to deduce the frequency of the missing Q band, i.e. the frequency corresponding to $(v = 0, J = 0) \rightarrow (v = 1, J = 0)$.
 - d) Calculate the bond length of the ground vibrational state from the difference between Q and the best fit value for P₁. [This difference is equivalent to $(v = 0, J = 0) \rightarrow (v = 0, J = 1)$.
 - e) Calculate the bond length of the v = 1 vibrational state from the difference between Q and the best fit value for R_1 .