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M.O. Treatment of Polyatomics

Expansion of the determinant gives an nth order equation, which has n roots, 
i.e. n possible values of E. 
Substituting a value of E into the secular equations results in a set of simultaneous 
equations which can be solved for ci.

secular determinanĤ 0 tji jiE− =S

In all, there are n molecular orbitals, each with n terms. 
For a non-trivial solution of 
these n simultaneous equations,
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If the Hamiltonian is separated into a sum of one - electron operators, 
a difficult problem involving n electrons can be rewritten as a set of simpler problems 
each involving one electron.
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Hückel M.O. Theory
Mostly used for carbon π electron systems; the σ electrons determine the molecular 
geometry (carbon skeleton).

1
2p L.C. orbiA. tals, one per CO  .
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Hückel Calculation for Butadiene
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Hückel Calculation for Butadiene – 2
1 2 3 4
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The number of nodes 
increases with energy.

1 1.62α +ψ β

4 1.62α −ψ β

3 0.62α −ψ β

2 0.62α +ψ β

Energy
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Hückel Applications
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4n+2 electrons is 
the most stable, 
e.g. C5H5

– is better
than C5H5.

Hückel Energy total
el

sum of one-electron e ne gies r
i

E = ε =∑
tot tot  4 4.48  2e.g. for butadiene , for e 2theneE E= α + β = α + β

Delocalization Energy totD.E. (double bonds)E E= − ∑
resonance energy   D.E.e 4 4.48 2(2 2 ).g. for butadien 0 48e .= α + β − α + β = β
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Hückel Applications – 2
Alternant Hydrocarbons for conjugaged π systems

C atoms can be divided into two sets (e.g. with and without stars) such that no two 
members of the same set are bonded together.

*

***
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*

* * *

**
**

*

*

Naphthalene Biphenylene Benzyl radical

Not

Azulene Acenaphthylene

Not

For alternant hydrocarbons, the energy levels of bonding and anti-bonding orbitals 
are arranged symmetrically about α.  

The π-electron density is distributed equally over the carbons in the ground state, i.e. 
the molecules are non-polar.

π Electron Density 2
k ik i

i
q c n= ∑ i molecular orbital

k atom

π Bond Order ab ia ib i
i

P c c n= ∑ e.g. for butadiene, P12 = 0.89, P23 = 0.45.
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Simplifying the Secular Determinant
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In principle, by manipulating 
rows and columns it is possible 
to achieve a diagonal form:
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Evaluation of the determinant 
gives an equation of order n in E

( )( ) ( )11 22 0nng g g− − − =…E E E

which can be solved to give n eigenvalues, each corresponding to one of n eigenfunctions.  
These orthogonal eigenfunctions are linear combinations of the original basis set ψ.

Quantum chemistry programs utilize efficient computer algorithms to diagonalize matrices.
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Computational Chemistry Methods and Programs
Molecular Mechanics

Geometry optimization using classical mechanics and parameterized force fields.
The most common force-field is MM2, which is used by HyperChem, Chem3D and many 
other chemical structure programs.

Semi-empirical M.O. Methods
LCAO applied to valence electrons only, with parameterized constants for the integrals.

The Hückel Method is simple enough to do with paper and pencil. 
HyperChem uses the Extended Hückel Method. 
More sophisticated methods include

CNDO, INDO, MNDO, MINDO, MINDO/3, AM1, PM3
They are often included in ab initio quantum chemistry packages and are useful for quick or 
approximate answers before applying the “big guns”.

Ab initio M.O. Methods
Calculations start from scratch, in principle using all electrons and interactions but then 

have to invoke various approximations to make the problem tractable.
The best known programs are GAUSSIAN (commercial) and GAMESS (free).
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The Self-consistent Field Method
Think of the probability distribution of an individual electron as its charge density.

Then the potential energy that electron 
1 experiences at r1 due to electron 2 is ( ) ( ) ( )eff *

1 1 22
12

1
V r rr

r
= φφ

Define a one-electron Hamiltonian ( ) ( )eff 2 eff
1 1 1 1 1
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1Ĥ
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Zr V r
r

= − ∇ ψ − ψ +

In principle, the Shrödinger equation 
can be solved to find the orbital 
energy ε1 and the wave function φ.

( ) ( ) ( )eff
1 1 1 1 1Ĥ r r rφ = ε φ

Problem: We don’t know the electrostatic potential because it depends on 
(and others if more than 2 electrons).

( ) ( )*
2 2r rφ φ

Procedure: Guess the form of φ(r) and use it as an estimate of V1.
Solve the Schrödinger equation to get φ1(r) which can be used for V2.
Solve the Schrödinger equation to get φ2(r) which can be used for V1.
Iterate until the φ(r) are self-consistent (i.e. input = output)

Such orbitals are Hartree-Fock orbitals.
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Comparison of M.O. and V.B. Methods

M.O. theory predicts states; 
electrons are then added (Aufbau).
M.O. electrons are naturally delocalized 
over a number of atoms, although a 
particular orbital may be localized.
M.O. wavefunctions overemphasize 
ionic terms; C.I. is used to correct this.
In M.O., hybridization is simply 
L.C.A.O. on a single centre.
M.O. uses SCF to accommodate 
orbital distortion as electrons are added 
to states – easily handled by computer.

[ ][ ] VMO B(1) (1) (2) (2) (1) (2) (1) (2)a b a b a b b aΨ ∝∝ ± ± ±Ψ

V.B. starts with electron-pair bonds 
and builds up structures.
V.B. uses resonant structures to 
achieve delocalization.

V.B. wavefunctions naturally ignore 
ionic terms, but they can be added.
V.B. needs hybridization to explain 
molecular shapes. 
V.B. calculations involve more 
complicated integrals, and a large 
number of resonant structures.

Both predict increased electron density between bound states.
Both start with atomic orbitals but combine them in different ways: 

Both require paired electron spins in the bond (Pauli Principle).


