Photoelectron Spectroscopy

Ionization energies of atoms and molecules can be measured by means of the photoelectric effect.

The source must be intense, monochromatic and energetic. In conventional (UV) P.E.S. a common source of excitation is He 1s2p ${}^{1}P_{1} \xrightarrow{\lambda=58.4 \text{ nm}}{2122 \text{ eV}} \rightarrow 1\text{s}^{2-1}\text{S}_{0}$

Koopman's Theorem assumes that the molecular geometry remains unchanged on ionization, whence orbital energy = I_i

Fine structure in the P.E. spectrum shows that the ion is vibrationally excited, $hv_{exc} = \frac{1}{2}m_ev_e^2 + I_i + \Delta E_{vib}^+$ consistent with changes in bond lengths/angles in the ion. ESCA (Electron Spectroscopy for Chemical Analysis) is the X-ray equivalent of P.E.S. and is used to ionize electrons from low-lying atomic orbitals. Cr (5400 eV) or Al (1490 eV) excitation is commonly used.

Paul Percival

1

Vibronic Transitions

vibrational-electronic $hv = \Delta E = \Delta E_{elec} + \Delta E_{vib}$

 $\Delta v = 0, \pm 1, \pm 2, ...$ but only the ground vibrational state is significantly populated at room temperature. Therefore, for absorption:

$$\Delta E = \Delta E_{\text{elec}} + \hbar \omega_{\text{e}}' \Big[(v' + \frac{1}{2}) - x_{\text{e}}' (v' + \frac{1}{2})^2 \Big] - \hbar \omega_{\text{e}}'' \Big[\frac{1}{2} - \frac{1}{4} x_{\text{e}}'' \Big]$$

There is a well-defined progression of vibrational lines in the electronic band.

and.
$$(v'', v') = 0,0$$
 1,0 2,0 3,0 4,0 5,0 6,0

The Franck-Condon Principle The intensity of a transition depends on the transition moment. $\langle \Psi \rangle$

$$\begin{aligned} \mathbf{\hat{u}}' \left| \hat{\mathbf{d}} \right| \Psi'' \rangle &= \left\langle \psi'_{e} \psi'_{v} \right| \hat{\mathbf{d}}_{e} \left| \psi''_{e} \psi''_{v} \right\rangle + \left\langle \psi'_{e} \psi'_{v} \right| \hat{\mathbf{d}}_{k} \left| \psi''_{e} \psi''_{v} \right\rangle \\ &= \left\langle \psi'_{v} \left| \psi''_{v} \right\rangle \left\langle \psi'_{e} \right| \hat{\mathbf{d}}_{e} \left| \psi''_{e} \right\rangle + \left\langle \psi'_{e} \left| \psi''_{e} \right\rangle \left\langle \psi'_{v} \right| \hat{\mathbf{d}}_{k} \left| \psi''_{v} \right\rangle \\ &\approx \left\langle \psi'_{v} \left| \psi''_{v} \right\rangle \left\langle d_{e} \right\rangle_{mn} \qquad 0 \end{aligned}$$

i.e. the transition moment depends on the overlap of vibrational wave functions. The approximation depends on the separability of electronic and vibrational wavefunctions, i.e. the Born-Oppenheimer Principle.

Paul Percival

Franck-Condon Principle

Electronic transitions occur faster than nuclei can respond. \Rightarrow Vertical transitions Spectral intensities depend on the overlap integral for the upper and lower states.

Fluorescence and Phosphorescence

Phosphorescence lifetimes are generally longer than fluorescence lifetimes because the triplet-singlet transition is "forbidden". Such inter-system transitions are enhanced by the heavy atom effect.

Comparison of M.O. and V.B. Methods

- Both predict increased electron density between bound states.
- Both start with atomic orbitals but combine them in different ways:

 $\Psi_{\rm MO} \propto \left[a(1) \pm b(1) \right] \left[a(2) \pm b(2) \right]$

- $\Psi_{\rm VB} \propto a(1)b(2) \pm b(1)a(2)$
- Both require paired electron spins in the bond (Pauli Principle).
- M.O. theory predicts states;
 electrons are then added (Aufbau).
- M.O. electrons are naturally delocalized over a number of atoms, although a particular orbital may be localized.
- M.O. wavefunctions overemphasize ionic terms; C.I. is used to correct this.
- In M.O., hybridization is simply L.C.A.O. on a single centre.
- M.O. uses SCF to accommodate orbital distortion as electrons are added to states – easily handled by computer.

- V.B. starts with electron-pair bonds and builds up structures.
- V.B. uses resonant structures to achieve delocalization.
- V.B. wavefunctions naturally ignore ionic terms, but they can be added.
- V.B. needs hybridization to explain molecular shapes.
- V.B. calculations involve more complicated integrals, and a large number of resonant structures.

Why are Bohr orbits Quantized?

Treat the electron in orbit like the 'particle on a ring".

It must satisfy the cyclic boundary condition: $2\pi r = n\lambda$ n = 1, 2, 3, ...

Combining this with the de Broglie relation $p = mv = h / \lambda$

gives the Bohr quantization condition: $L = mvr = \left(\frac{h}{\lambda}\right) \left(\frac{n\lambda}{2\pi}\right) = n\hbar$

The Virial Theorem

If the potential energy has a r^n dependence, then

 $\langle T \rangle = \frac{1}{2} n \langle V \rangle$

e.g. (1) the H atom

$$V \propto r^{-1}$$

e.g. (2) the harmonic oscillator $V \propto r^2$

 $\langle T \rangle = \langle V \rangle = \frac{1}{2} \langle E \rangle$

A more general version of the Quantum Mechanical Virial Theorem is

$$\left\langle T \right\rangle = \frac{1}{2} \left\langle \sum_{j} q_{j} \frac{\partial V}{\partial q_{j}} \right\rangle$$

CHEM 260 Concepts

quantization of energy quantization of angular momentum boundary conditions wave-particle duality mass-energy conversion momentum of mass-less particles (de Broglie) **Uncertainty Principle** tunneling wavefunctions contain info on all properties expectation value orthogonality degeneracy resonant absorption/emission of radiation selection rules

spin angular momentum spin density radial distribution function Term symbol anharmonicity normal mode potential energy surface **Born-Oppenheimer Principle** Valence Bond **LCAO** bond hybridization Variation Principle Overlap integral Separation of variables

CHEM 260 Problems

Photoelectric effect de Broglie Particle in a box Rigid Rotor / microwave spectroscopy Atomic spectra of H-like atoms Atomic term symbols NMR ESR Vibrational spectroscopy Vibration-rotation spectroscopy Raman spectroscopy Molecular electronic configurations Hückel calculations on p systems

Energy-level Diagrams Translation: particle in the box Rotation: rigid rotor Vibration: simple harmonic oscillator anharmonic oscillator (Morse Curve) Electronic: H atom multi-electron atom diatomic molecule polyatomic (Hückel pi system) NMR Spin: ESR Shapes of wavefunctions atomic orbitals: radial functions radial distribution functions spherical harmonics molecular orbitals