Schrödinger's Cat

COMICS-THAT-90\%-OF-THE-GENERAL-PUBLIC-WON'T-UNDERSTAND WEEK

http://www.explosm.net/comics/949/

Wavefunctions

Wavefunctions are...
"Matter Waves"
From classical physics,

$$
\psi(x)=\mathrm{e}^{i 2 \pi x / \lambda}=\cos \left(\frac{2 \pi x}{\lambda}\right)+i \sin \left(\frac{2 \pi x}{\lambda}\right)
$$

is a wave propagating in the positive x direction.
Using de Broglie’s relation for a particle,

$$
\psi(x)=\exp (i p x / \hbar) \quad \hbar=h / 2 \pi
$$

Solutions of the Schrödinger Equation

The wavefunction $\Psi(r, t)$ for a system is a solution of the Schrödinger equation, a differential equation for the spatial (r) and temporal (t) behaviour of de Broglie waves.
Ψ contains all information about the dynamical properties of the system. In principle, all observable properties may be deduced by performing the appropriate mathematical operation on Ψ.
$\Psi(r, t)$ is a function of time and all the coordinates of all the particles that make up the system.
$\Psi(r, t)$ can be interpreted as the amplitude of the probability density for the spatial description of the system.

Properties of Wavefunctions

For a single particle wavefunction, $\psi(r)$
the probability density of the particle at r is $|\psi|^{2}=\psi^{*} \psi$
i.e. probability of finding the particle in region $\mathrm{d} x$ is $\psi^{*}(x) \psi(x) \mathrm{d} x$ or in volume $\mathrm{d} \tau$ is $\psi^{*}(\tau) \psi(\tau) \mathrm{d} \tau$

An acceptable wavefunction is ... continuous usually also $\partial \psi / \partial q$
single-valued actually $\psi^{*} \psi$
finite everywhere $\int \psi^{*} \psi \mathrm{~d} \tau=1$

These limitations force ψ to obey boundary conditions which result in quantization i.e. only some solutions of the Schrödinger equation survive.

A wavefunction is normalized if $\int \psi^{*} \psi \mathrm{~d} \tau=1$
Two wavefunctions ψ_{1} and ψ_{2} are orthogonal if $\int \psi_{1} * \psi_{2} \mathrm{~d} \tau=0$

The Schrödinger Equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m}\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right] \Psi+V \Psi=i \hbar \frac{\partial}{\partial t} \Psi \quad \text { or } \quad \hat{H} \Psi=i \hbar \frac{\partial}{\partial t} \Psi \\
\text { the Laplacian (del squared): } \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}
\end{gathered}
$$

Assume $\quad \Psi(r, t)=\psi(r) \phi(t) \quad$ and $\quad V=V(r)$
then $\quad-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(r) \phi(t)+V(r) \psi(r) \phi(t)=i \hbar \psi(r) \frac{\mathrm{d} \phi(t)}{\mathrm{d} t}$
i.e. $\quad-\frac{\hbar^{2}}{2 m \psi} \nabla^{2} \psi+V(r)=\frac{i \hbar}{\phi} \frac{\mathrm{~d} \phi}{\mathrm{~d} t}$

This equation is separable in ψ and $\phi: \quad-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+V \psi=E \psi$
The time-independent
Schrödinger equation

$$
\begin{aligned}
& \hat{H} \psi=E \psi \\
& \phi(t)=C e^{-i E t / \hbar}
\end{aligned}
$$

$$
i \hbar \frac{\mathrm{~d} \phi}{\mathrm{~d} t}=E \phi \quad \phi(t)=C \mathrm{e}^{-i E t / \hbar}
$$

$\Psi(r, t)=C \psi(r) \mathrm{e}^{-\mathrm{iEt} / \hbar}$ is a stationary state, because $\Psi * \Psi=C^{2} \psi^{*} \psi$ is independent of time

The Free Particle

The translational motion of a single free particle moving in 1 dimension is described by

$$
\hat{\mathrm{H}} \psi_{n}=E_{n} \psi_{n} \quad \text { where } \quad \hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} \quad \text { is an operator. }
$$

i.e. $\frac{\mathrm{d}^{2} \psi_{n}}{\mathrm{dx}^{2}}=\left(\frac{-2 m E_{n}}{\hbar^{2}}\right) \psi_{n} \quad$ a $2^{\text {nd }}$-order differential equation

Solutions: $\quad \psi_{n}=C \mathrm{e}^{i k x}, \quad k^{2}=2 m E_{n} / \hbar^{2}=p_{n}{ }^{2} / \hbar^{2}$
i.e. $\psi_{n}=C \mathrm{e}^{ \pm i_{n} \gamma / \hbar} \quad n$ labels different solutions

In general, $\quad \psi_{n}=A \mathrm{e}^{+i i_{n} x / \hbar}+B \mathrm{e}^{-i i_{n} x / \hbar}$
This represents an oscillation with wavelength h / p, since

$$
\exp \{ \pm i p x / \hbar\}=\cos (2 \pi x / \lambda) \pm i \sin (2 \pi x / \lambda), \quad \lambda=h / p
$$

Momentum, p, is associated with the first derivative of ψ
Kinetic energy, E, depends on the second derivative of ψ
For a given energy, $E_{n}, \quad \psi^{*} \psi=C^{2} \quad$ a constant.

The Particle in a 1-D Box

$$
\begin{array}{ll}
\text { "box" }=\text { square well potential } \\
V(x)=\infty & 0>x \quad x>a \\
V(x)=0 & 0 \leqslant x \leqslant a
\end{array}
$$

particle somewhere on this line
Solve $\hat{H} \psi=E \psi$ for $\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V(x)$
By extrapolation from the free particle wavefunction,

$$
\begin{array}{rlr}
\psi & =C \exp \left\{i[2 m(E-V)]^{1 / 2} x / \hbar\right\} \quad \text { inside the box } \\
& =C \exp \left\{-[2 m(V-E)]^{1 / 2} x / \hbar\right\} \text { for } V>E \text { outside the box } \\
& \rightarrow 0 \text { as } V \rightarrow \infty \quad \Rightarrow \text { The particle is confined to the box (potential well). }
\end{array}
$$

Within the walls the situation is identical to the free particle...
i.e, $\psi_{\mathrm{n}}=A \mathrm{e}^{+i_{\mathrm{n}} x / \hbar}+B \mathrm{e}^{-i p_{\mathrm{n}} x / \hbar}$ or $C \cos \left(p_{\mathrm{n}} x / \hbar\right)+D \sin \left(p_{\mathrm{n}} x / \hbar\right)$
... until boundary conditions are applied.

The Particle in a 1-D Box (continued)

$$
\psi_{\mathrm{n}}=C \cos \left(p_{\mathrm{n}} x / \hbar\right)+D \sin \left(p_{\mathrm{n}} x / \hbar\right)
$$

Apply boundary At $x=0, \psi=0 \Rightarrow C=0$

$$
\text { conditions } \quad \text { At } x=a, \psi=0 \Rightarrow D \sin \left(p_{\mathrm{n}} x / \hbar\right)=0 \text {; i.e. } p_{\mathrm{n}} a / \hbar=n \pi
$$

$$
\begin{array}{ll}
\psi_{\mathrm{n}}=D \sin (n \pi x / a) & n=1,2,3, \ldots \quad n \text { is called the quantum number } \\
E_{n}=\frac{p_{n}^{2}}{2 m}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} & n=1,2,3, \ldots
\end{array}
$$

Boundary conditions impose quantization.

The value of D is found by normalizing the wavefunction:

$$
\int \psi_{\mathrm{n}} * \psi_{\mathrm{n}} \mathrm{~d} \tau=1
$$

$$
\begin{aligned}
& D^{2} \int_{0}^{a} \sin ^{2}(n \pi x / a) \mathrm{d} x=\frac{1}{2} a D^{2}=1 \Rightarrow D=\left(\frac{2}{a}\right)^{1 / 2} \\
& \psi_{\mathrm{n}}=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)
\end{aligned}
$$

The Particle in a 1-D Box - Solutions

Energy Levels $\quad E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}} \quad n=1,2,3, \ldots$

$$
\begin{array}{ll}
\text { As } a \rightarrow \infty, & E \text { becomes a } \\
\Delta E=E_{n+1}-E_{n} \rightarrow 0, & \text { continuous function }
\end{array}
$$

Wavefunctions

$$
\psi_{\mathrm{n}}=\left(\frac{2}{a}\right)^{1 / 2} \sin \left(\frac{n \pi x}{a}\right)
$$

Larger n and/or smaller $a \rightarrow$ sharper "wiggles"
\Rightarrow higher momentum and kinetic energy.

Wavefunctions of different energy (different n) are orthogonal.
e.g. $\int_{0}^{a} \psi_{1} \psi_{2} \mathrm{~d} x=\left(\frac{2}{a}\right) \int_{0}^{a} \sin \left(\frac{\pi x}{a}\right) \sin \left(\frac{2 \pi x}{a}\right) \mathrm{d} x=0$

If a decreases, E and ΔE become larger

Molecular Energy Levels

Spectroscopy - Fundamentals

Frequency $\quad v \mathrm{~Hz}\left(\mathrm{~s}^{-1}\right) \quad \omega=2 \pi \nu \mathrm{rad} \mathrm{s}^{-1}$
Wavelength $\quad \lambda=\frac{c}{v} \mathrm{~m}$

$$
\begin{aligned}
& 1 \text { micron }=1 \mu \mathrm{~m}=10^{-6} \mathrm{~m} \\
& 1 \AA=0.1 \mathrm{~nm}=10^{-10} \mathrm{~m}
\end{aligned}
$$

Wavenumber $\quad \bar{v}=1 / \lambda \quad \mathrm{cm}^{-1} \quad=\frac{v}{c} \quad\left(\begin{array}{c}(\mathrm{Hz}) \\ \left(\mathrm{cm} \mathrm{s}^{-1}\right)\end{array}\right.$

$$
c=2.998 \times 10^{10} \mathrm{~cm} \mathrm{~s}^{-1}
$$

Emission and absorption spectroscopy are resonant processes.

$$
\begin{array}{ll}
\hbar \omega=h v=\Delta E \quad & h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
& \hbar=h / 2 \pi
\end{array}
$$

The intensities of spectral lines depend on...

Abstract

population of states:

transition probability:
path length and concentration:

Boltzmann distribution specific selection rules often depend on symmetry

Beer-Lambert Law

$$
\frac{N_{\text {upper }}}{N_{\text {lower }}}=\exp (-\Delta E / k T)
$$

$$
\frac{I}{I_{0}}=\exp (-\varepsilon[\mathrm{M}] l)
$$

Statistical Interpretation of ψ

The probability density of finding a particle at position r

$$
\rho(r)=|\psi(r)|^{2}=\psi^{*} \psi
$$

The probability of finding the particle between a and b

$$
P_{a b}=\int_{a}^{b} \rho(r) d r=\int_{a}^{b}|\psi(r)|^{2} d r
$$

N.B. The wave function may be complex, but a probability must be real and nonnegative.

The statistical interpretation implies indeterminacy: Until you measure the position you only know the probability of finding it at a particular position.
The Copenhagen interpretation says that the particle is not anywhere particular until we measure it. Measurement collapses the wave function.

Measurements on a set of identical particles will generate different values (subject to the probability distribution $\psi \psi^{*}$).
The average position is the expectation value: $\quad\langle r\rangle=\int_{-\infty}^{\infty} r|\psi(r)|^{2} d r=\int_{-\infty}^{\infty} \psi^{*} r \psi d r$

Schrödinger's Cat

Schrödinger
A closed box contains a small amount of radioactive material, a Geiger counter hooked to a triggering device that can break
a vial of poison gas
...and a cat.
What is the state of the cat after a short time (during which one atom might decay)?
As long as the box is shut the cat's state is indeterminate:

$$
\psi=\frac{1}{\sqrt{2}}\left(\psi_{\text {alive }}+\psi_{\text {dead }}\right)
$$

Opening the box collapses the wave function to one state or the other.
Alternative (modern) explanation:
Triggering the Geiger counter is the measurement, not opening the box.

