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Schrödinger’s Cat

http://www.explosm.net/comics/949/
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Wavefunctions
Wavefunctions are…

From classical physics, 
“Matter Waves”

2 / 2 2( ) e cos sini x x xx iπ λ π π⎛ ⎞ ⎛ ⎞ψ = = +⎜ ⎟ ⎜ ⎟λ λ⎝ ⎠ ⎝ ⎠

is a wave propagating in the positive x direction.

Using de Broglie’s relation for a particle,

( ) exp( / ) / 2x ipx hψ = = π

Solutions of the Schrödinger Equation

The wavefunction Ψ(r,t) for a system 
is a solution of the Schrödinger 
equation, a differential equation for 
the spatial (r) and temporal (t)
behaviour of de Broglie waves.

Ψ contains all information about the dynamical properties of the system.  In principle, 
all observable properties may be deduced by performing the appropriate mathematical 
operation on Ψ.

Ψ(r,t) is a function of time and all the coordinates of all the particles that make up the 
system.

Ψ(r,t) can be interpreted as the amplitude of the probability density for the spatial 
description of the system.
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Properties of Wavefunctions
For a single particle wavefunction, ψ(r)
the probability density of the particle at r is |ψ |2 = ψ*ψ

i.e. probability of finding the particle in region dx is ψ*(x)ψ(x)dx

or in volume dτ is ψ*(τ)ψ(τ)dτ

An acceptable wavefunction is … continuous

single-valued

finite everywhere

usually also / q∂ψ ∂

actually *ψ ψ

* d 1ψ ψ τ =∫
These limitations force ψ to obey boundary conditions which result in quantization
i.e. only some solutions of the Schrödinger equation survive.

A wavefunction is normalized

Two wavefunctions ψ1 and ψ2 are orthogonal

   * dif 1ψ ψ τ =∫
1 2   * di 0f ψ ψ τ =∫
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The Schrödinger Equation
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This equation is separable in ψ and φ :
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Ηψ = ψ
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-iEt/( , ) ( )er t C rΨ = ψ is a stationary state, because

The time-independent 
Schrödinger equation

( , ) ( ) ( )Assume and ( )r t r t V V rΨ = ψ φ =

2* *CΨ Ψ = ψ ψ is independent of time



Paul Percival CHEM 260  Spring 2010

5

The Free Particle
The translational motion of a single free particle moving in 1 dimension is described by

/ /e eIn general, n nip x ip x
n A B+ −ψ = +

This represents an oscillation with wavelength h/p, since

2 2

2

2

2 2i.

dˆ ˆ
2 d

d 2 

where

e. 
dx

n n n

n n
n

E
m x

mE

Ηψ = ψ Η = −

ψ −⎛ ⎞= ψ⎜ ⎟
⎝ ⎠

is an operator.
and V = 0 for a free particle.

{ }exp / cos(2 / ) sin(2 / ), /ipx x i x h p± = π λ ± π λ λ =

Momentum, p, is associated with the first derivative of ψ

Kinetic energy, E,  depends on the second derivative of ψ

For a given energy, En, ψ* ψ = C2 a constant.

a 2nd-order differential equation

2 2 2 2

/

e , 2 / /

i.e. e  n

ikx
n n n

ip x
n

C k mE p

C ±

ψ = = =

ψ = n labels different solutions

Solutions:
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( ){ }
( ){ }

1/ 2

1/ 2

inside the box

for outside th

e

e box

0  as  

xp 2 /

exp 2 /        

C i m E V x

C m V E

V

E x V

ψ = −⎡ ⎤⎣ ⎦

= − − >⎡ ⎤⎣

→ ∞

⎦

→ ⇒ The particle is confined to the box (potential well).

The Particle in a 1-D Box

x

V(x)

a0

∞ ∞

particle somewhere on this line

“box” = square well potential

( ) 0

( ) 0 0

V x x x a

V x x a

= ∞ > >

=

2 2

2Solve for dˆ ˆ    ( )
2 d

E V x
m x

Ηψ = ψ Η = − +

By extrapolation from the free particle wavefunction,

Within the walls the situation is identical to the free particle...
n n/ /

nn ni.e, or cos( / ) sin( / )e eip x ip x C p x D p xA B+ −ψ = + + … until boundary 
conditions are applied.
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The Particle in a 1-D Box (continued)

Boundary conditions impose quantization.

n n ncos( / ) sin( / )C p x D p xψ = +

n n

At  0, 0 0

At  , 0 sin( / ) 0 ; . . /

x C

x a D p x i e p a n

= ψ = ⇒ =

= ψ = ⇒ = = π

n

2 2 2 2

2

sin( / ) 1, 2, 3, ...

1, 2, 3, ...
2 2

n
n

D n x a n

p nE n
m ma

ψ = π =

π
= = =

n is called the quantum number

The value of D is found by 
normalizing the wavefunction:

( )

n n

1/ 2
2 2 21

20

* d 1

2sin / d 1
a

D n x a x aD D
a

⇒

ψ ψ τ =

⎛ ⎞π = = = ⎜ ⎟
⎝ ⎠

∫

∫

Apply boundary 
conditions

1/ 2

n
2 sin n x
a a

π⎛ ⎞ ⎛ ⎞ψ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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The Particle in a 1-D Box – Solutions
2 2 2

22n
nE

ma
π

=

n+1

  ,
0,

As

n

a
E E E

→ ∞
Δ = − →

E becomes a 
continuous function

If a decreases, E and ΔE become larger

1/ 2

n
2Wavefunc itio ss nn n x
a a

π⎛ ⎞ ⎛ ⎞ψ = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Larger n and/or smaller a → sharper “wiggles” 
⇒ higher momentum and kinetic energy.

Wavefunctions of different energy 
(different n) are orthogonal.

1 20 0

2 2. . d sin sin d 0
a a x xe g x x

a a a
π π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ψ ψ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫

4

1

2
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n

Energy

2ψ ψ

Z.p.E.

1, 2, 3, ...n =Energy Levels
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Molecular Energy Levels

Electronic Vibrational Rotational Translational

UV + visible IR microwave ~0

λ:  10-9 - 10-6 m 10-6 - 10-4 m 10-4 - 10-2 m → ∞

very long λ used in radio frequency spectroscopy NMR

very short λ gamma 
rays used to probe 
nuclear energy levels



Paul Percival CHEM 260  Spring 2010

10

Spectroscopy – Fundamentals

Frequency

1 micron = 1 μm= 10-6 m

1 Å = 0.1 nm = 10-10 m

c = 2.998 × 1010 cm s-1

h = 6.626 × 10-34 J s

= h/2π

-1 -1

-1
-1

   Hz  (s ) 2    rad s

   m

( )Hz1 /    cm    
( )cm s

c

c

ν ω = πν

λ =
ν

ν
ν = λ =

Emission and absorption spectroscopy are resonant processes.

h Eω = ν = Δ

The intensities of spectral lines depend on…

population of states: Boltzmann distribution

transition probability: specific selection rules
often depend on symmetry

path length and concentration: Beer-Lambert Law

upper

lower

exp( / )
N

E kT
N

= −Δ

0

exp( [M] )I l
I

= −ε

Wavenumber

Wavelength
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Statistical Interpretation of ψ

The probability density of finding 
a particle at position r ( ) ( ) 2 *r rρ = = ψ ψψ

The probability of finding the 
particle between a and b ( ) ( )

2b b
ab a a

P dr drr r= ρ = ψ∫ ∫

ρ(r)

ra   b

N.B. The wave function may be complex, but a probability must be real and nonnegative.

The statistical interpretation implies indeterminacy:  Until you measure the position you 
only know the probability of finding it at a particular position.

The Copenhagen interpretation says that the particle is not anywhere particular until we 
measure it.  Measurement collapses the wave function.

Measurements on a set of identical particles will generate different values (subject to 
the probability distribution ψψ*).  

The average position is the expectation value: ( )
2

*r dr r drr r
∞ ∞

−∞ −∞
= = ψ ψψ∫ ∫

Born

Bohr
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Schrödinger’s Cat

A closed box contains a small amount of radioactive material,
a Geiger counter hooked to a triggering device that can break
a vial of poison gas

…and a cat.

What is the state of the cat after a short time (during which one atom might decay)?

As long as the box is shut the cat’s state is indeterminate:

Schrödinger

( )alive dead
1
2

ψ = ψ + ψ

Opening the box collapses the wave function to one state or the other.

Alternative (modern) explanation:

Triggering the Geiger counter is the measurement, not opening the box.


