Rotation as Translational Motion

For a particle of mass m moving in 3-D space

$$
\hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{V}}=-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(r, \theta, \phi)=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda^{2}\right)+V(r, \theta, \phi)
$$

where $\quad \Lambda^{2}=\frac{\partial^{2}}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}$ Legendrian
Suppose the particle is confined to the surface of a sphere, i.e. $r=R$.

$$
\hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 m R^{2}} \Lambda^{2} \quad \text { a function of } \theta \text { and } \phi \text { only }
$$

A rigid rotator is a pair of masses at a fixed distance apart (R), freely rotating

$$
\begin{aligned}
\hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 \mu R^{2}} \Lambda^{2}=-\frac{\hbar^{2}}{2 I} \Lambda^{2} \quad I & =\mu R^{2} \\
\mu & =\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

If the particle is confined to a ring (the equator), $\theta=\pi / 2$.

$$
\hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 I} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}}=-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{ds}^{2}} \quad s \text { is the distance along the circumference }
$$

Laplacian in Various Coordinate Systems Enrichment

$$
\begin{aligned}
\nabla^{2} & =\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} & & \text { cartesian } \\
& =\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}} & & \text { cylindrical } \\
& =\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda^{2} & & \text { spherical } \\
\text { where } \quad \Lambda^{2} & =\frac{\partial^{2}}{\partial \theta^{2}}+\frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} & & \text { Legendrian }
\end{aligned}
$$

Spherical Polar Coordinates

$$
\int d \tau=\int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} r^{2} \sin \theta d \theta d \phi d r=\int_{0}^{R} r^{2} d r \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta=\int_{0}^{R} 4 \pi r^{2} d r=\frac{4}{3} \pi R^{3}
$$

volume

of sphere

Internal Coordinates and Reduced Mass

If the potential energy of a system depends only on the internal coordinates of the system, then the motion of the centre of mass can always be separated from the internal motion.

Consider two point masses m_{1} and m_{2}, both in motion and interacting with each other.

$$
E=\frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}+\dot{z}_{1}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}+\dot{z}_{2}^{2}\right)+V\left(x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}\right)
$$

Define centre of mass coordinates: $\quad X=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}} \quad Y=\frac{m_{1} y_{1}+m_{2} y_{2}}{m_{1}+m_{2}} \quad Z=\frac{m_{1} z_{1}+m_{2} z_{2}}{m_{1}+m_{2}}$ and internal coordinates: $x=x_{1}-x_{2} \quad y=y_{1}-y_{2} \quad z=z_{1}-z_{2}$
then

$$
E=\underbrace{\frac{1}{2}\left(m_{1}+m_{2}\right)\left(\dot{X}^{2}+\dot{Y}^{2}+\dot{Z}^{2}\right)}_{\text {translational energy }}+\underbrace{\frac{1}{2} \mu\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+V(x, y, z)}_{\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}}
$$

The Particle on a Ring

$$
\hat{\mathrm{H}} \Phi=E \Phi \quad \text { where } \quad \hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 I} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \phi^{2}}
$$

The Schrödinger Equation looks like that of the free particle, so the solutions are similar:

$$
\Phi_{m}=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{i m \phi} \quad E_{m}=\frac{\hbar^{2}}{2 I} m^{2} \quad m=0, \pm 1, \pm 2, \ldots
$$ not mass!

Quantization is due to a cyclic boundary condition: $\quad \Phi(\phi)=\Phi(\phi+2 m \pi)$
Except for $m=0$ the states are twofold degenerate.
Real functions can be constructed by taking linear combinations:

$$
\begin{aligned}
& \Phi_{m}^{+}=\frac{1}{\sqrt{2}}\left[\Phi_{m}+\Phi_{-m}\right]=\frac{1}{\sqrt{\pi}} \cos (|m| \phi) \\
& \Phi_{m}^{-}=\frac{-i}{\sqrt{2}}\left[\Phi_{m}-\Phi_{-m}\right]=\frac{1}{\sqrt{\pi}} \sin (|m| \phi)
\end{aligned}
$$

The Particle on a Ring - 2

$$
\begin{aligned}
& \Phi_{m}^{+}=\frac{1}{\sqrt{\pi}} \cos (|m| \phi) \\
& \Phi_{m}^{-}=\frac{1}{\sqrt{\pi}} \sin (|m| \phi)
\end{aligned}
$$

Except for $m=0$ the states are twofold degenerate.

$$
\Phi(\phi)=\Phi(\phi+2 m \pi)
$$

m

The Particle on a Sphere

$$
\Lambda^{2} \Psi(\theta, \phi)=-\frac{2 I}{\hbar^{2}} E \Psi(\theta, \phi)
$$

This type of equation is "well known" (to applied mathematicians):

$$
\Lambda^{2} \mathrm{Y}_{l m}(\theta, \phi)=-l(l+1) \mathrm{Y}_{l m}(\theta, \phi) \quad\left\{\begin{array}{c}
l=0,1,2, \ldots \\
m=0, \pm 1, \pm 2, \ldots, \pm l
\end{array}\right.
$$

The solutions are the
spherical harmonics: $\quad \mathrm{Y}_{l m}(\theta, \phi)=\frac{1}{\sqrt{2 \pi}} \Theta_{l m}(\theta) \mathrm{e}^{\mathrm{im} \mathrm{\phi}}$

l	m	$\Theta_{l m}$
0	0	$\sqrt{1 / 2}$
1	0	$\sqrt{3 / 2} \cos \theta$
1	± 1	$\sqrt{3 / 4} \sin \theta$
2	0	$\sqrt{5 / 8}\left(3 \cos ^{2} \theta-1\right)$
2	± 1	$\sqrt{15 / 4} \sin \theta \cos \theta$
2	± 2	$\sqrt{15 / 16} \sin ^{2} \theta$

Spherical Harmonics: Real Wavefunctions

$$
\begin{aligned}
& \mathrm{Z}_{l, m}^{+}=(1 / \sqrt{2})\left[\mathrm{Y}_{l, m}+\mathrm{Y}_{l,-m}\right]=(1 / \sqrt{\pi}) \cos (|m| \phi) \Theta_{l m}(\theta) \\
& \mathrm{Z}_{l, m}^{-}=(-i / \sqrt{2})\left[\mathrm{Y}_{l, m}-\mathrm{Y}_{l,-m}\right]=(1 / \sqrt{\pi}) \sin (|m| \phi) \Theta_{l m}(\theta)
\end{aligned}
$$

$l=2$

$$
l=1
$$

$l=0$

$m=-2$
$m=-1$
$m=0$
$m=+1$
$m=+2$

Rotational/Orbital Angular Momentum

The energy of a rotating body (or particle in orbit) is quantized.

$$
E_{l m}=\frac{\hbar^{2}}{2 I} l(l+1)
$$

$$
\left\{\begin{array}{c}
l=0,1,2, \ldots \\
m=0, \pm 1, \pm 2, \ldots, \pm l
\end{array}\right.
$$

There are $(2 l+1)$ degenerate states which have the same energy determined by the quantum number l.
The different states, labelled by quantum numbers m, are related by simple symmetry transformations, i.e. they correspond to different orientations in space.

The orientation of a rotating body is quantized.

Example for $l=2$:

$+{ }^{+|m| \hbar}$

Rotational Spectra of Diatomic Molecules

$$
\begin{aligned}
& \text { have a dipole moment. }
\end{aligned}
$$

Transitions: $\quad \Delta E=E_{J+1}-E_{J}=2 B(J+1)=2 B, 4 B, 6 B, \ldots$

The Moment of Inertia of a Rotating Molecule

Moments of Inertia - Principal Axes

Consider a molecule as a system of point masses whose positions are fixed relative to each other.

Centre of gravity: $\quad \overrightarrow{r_{0}}=\frac{\sum_{k} m_{k} \vec{r}_{k}}{\sum_{k} m_{k}}$
Put a Cartesian coordinate system at this centre and define the three moments of inertia.

$$
I_{x}=\sum_{k} m_{k} r_{k x}^{2} \text { etc. } \quad \begin{aligned}
& r_{k x} \text { is the perpendicular distance } \\
& \text { of nucleus } k \text { from the } x \text { axis }
\end{aligned}
$$

If $\quad I_{x y}=m_{k} r_{k x} r_{k y} \neq 0 \quad$ etc. rotate the coordinate system until $\quad I_{x^{\prime} y^{\prime}}=I_{y^{\prime} z^{\prime}}=I_{z^{\prime} x^{\prime}}=0$ etc.

It is always possible to find unique principal axes and thus calculate principal moments of inertia $\left(I_{a} I_{b} I_{c}\right)$.

Linear Rotator	$I_{a}=I_{b} \neq 0$	$I_{c}=0$
Spherical Top	$I_{a}=I_{b}=I_{c}$	$I_{c} \neq 0$
Symmetric Top	$I_{a}=I_{b} \neq I_{c}$	$I_{c} \neq 0$
prolate top	$I_{a}=I_{b}>I_{c}$	
oblate top	$I_{a}=I_{b}<I_{c}$	
Asymmetric Top	$I_{a} \neq I_{b} \neq I_{c}$	

Moments of Inertia

Linear Molecules

$I=\frac{8}{3} m_{1} r^{2}$

Symmetric Tops

