The Hydrogen Atom Emission Spectrum

Balmer (1885), Rydberg (1890) and Ritz (1908) analyzed atomic spectra empirically to find relationships between the frequencies of line sequences:

$$
v=T_{j}-T_{k} \quad T_{j} \propto \frac{1}{n^{2}} \quad n=1,2,3, \ldots
$$

The Bohr Atom

Bohr proposed:

* Electrons are in stationary states (orbits about the nucleus) without emission of energy.
* Transitions between states result in emission of radiation.
* the nuclear electrostatic attraction is exactly balanced by the centrifugal acceleration of the orbiting electron.

$$
\begin{aligned}
-\frac{(-Z e) e}{\left(4 \pi \varepsilon_{0}\right) r^{2}} & =\frac{m_{\mathrm{e}} v^{2}}{r} \\
L=m v r & =n \hbar \quad n=1,2,3
\end{aligned}
$$

Solving for $r, \quad r=\frac{n^{2} \hbar^{2}}{m Z e^{2}}\left(4 \pi \varepsilon_{0}\right)$
Energies $\quad E_{n}=T+V=\frac{1}{2} m v^{2}-Z e^{2} /\left(4 \pi \varepsilon_{0} r\right)$

Bohr radius $\quad a_{0}=r$ for $n=1, Z=1$ $=\frac{4 \pi \varepsilon_{0} \hbar^{2}}{m e^{2}}=0.529 \AA$

$$
=-\frac{m Z^{2} e^{4}}{2 n^{2} \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}=-\frac{\mathbb{R}}{n^{2}}
$$

Transitions $h v=\Delta E=E_{2}-E_{1}=-\mathbb{R}\left[\frac{1}{n_{2}{ }^{2}}-\frac{1}{n_{1}{ }^{2}}\right]$
\mathbb{R} is the Rydberg constant

Analysis of the H Atom Spectrum

Why are Bohr orbits Quantized?

Treat the electron in orbit like the 'particle on a ring".
It must satisfy the cyclic boundary condition: $2 \pi r=n \lambda \quad n=1,2,3, \ldots$

Combining this with the de Broglie relation $\quad p=m \nu=h / \lambda$
gives the Bohr quantization condition: $L=m v r=\left(\frac{h}{\lambda}\right)\left(\frac{n \lambda}{2 \pi}\right)=n \hbar$

The Hydrogen Atom

$$
\hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{V}}=-\frac{\hbar^{2}}{2 \mu} \nabla^{2}-\frac{\mathrm{e}^{2} Z}{\left(4 \pi \varepsilon_{0}\right) r} \quad \text { where } \quad \nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \Lambda^{2} \quad \begin{aligned}
& \mathrm{Z}=\text { nuclear charge } \\
& V(r)=0 \text { at } \mathrm{r}=\infty
\end{aligned}
$$

$$
\hat{\mathrm{H}} \psi(r, \theta, \phi)=E \psi(r, \theta, \phi) \quad \Rightarrow \quad \nabla^{2} \psi+\frac{2 \mu}{\hbar^{2}}\left[\frac{\mathrm{e}^{2} Z}{\left(4 \pi \varepsilon_{0}\right) r}+E\right] \psi=0
$$

Apply separation of variables: $\quad \psi(r, \theta, \phi)=\mathrm{R}(r) \mathrm{Y}(\theta, \phi)$

$$
\left[\frac{\partial^{2} \mathrm{R}}{\partial r^{2}}+\frac{2}{r} \frac{\partial \mathrm{R}}{\partial r}\right] \mathrm{Y}+\frac{\mathrm{R}}{r^{2}} \Lambda^{2} \mathrm{Y}+\frac{2 \mu}{\hbar^{2}}\left[\frac{\mathrm{e}^{2} Z}{\left(4 \pi \varepsilon_{0}\right) r}+E\right] \mathrm{RY}=0
$$

Divide by R and Y and multiply by r^{2}

$$
\frac{r^{2}}{\mathrm{R}} \frac{\partial^{2} \mathrm{R}}{\partial r^{2}}+\frac{2 r}{\mathrm{R}} \frac{\partial \mathrm{R}}{\partial r}+\frac{2 \mu}{\hbar^{2}}\left[\frac{\mathrm{e}^{2} Z r}{\left(4 \pi \varepsilon_{0}\right)}+E r^{2}\right]=-\overbrace{-\frac{1}{\mathrm{Y}} \Lambda^{2} \mathrm{Y}=k} \quad \text { a constant } \quad l=0,1,2, \ldots
$$

Rewriting the radial part:

$$
\left[\begin{array}{c}
\left.\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}-\frac{l(l+1)}{r^{2}}+\frac{2 \mu}{\hbar^{2}} \frac{Z \mathrm{e}^{2}}{\left(4 \pi \varepsilon_{0}\right) r}\right] \mathrm{R}=-\frac{2 \mu}{\hbar^{2}} E \mathrm{R} \quad \begin{array}{c}
\text { Another "well-known" equation. } \\
\text { The solutions, } \mathrm{R}_{n l} \text { only exist for } \\
n=1,2,3, \ldots \quad 0 \leqslant l \leqslant n-1
\end{array} \\
\begin{array}{l}
n=l
\end{array}
\end{array}\right.
$$

H Atom Quantum Numbers

The principal quantum number n determines the energy $\quad E_{n}=-\frac{Z^{2} \mu \mathrm{e}^{4}}{2 \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}} \cdot \frac{1}{n^{2}}$ The total wavefunction has $n-1$ nodes.

The azimuthal quantum number $\quad l$ describes the total orbital angular momentum:

$$
\hat{l}^{2} \Psi_{n l m}=\mathrm{R}_{n l} \hat{l}^{2} \mathrm{Y}_{l m}=\mathrm{R}_{n l} l(l+1) \hbar^{2} \mathrm{Y}_{l m}=l(l+1) \hbar^{2} \psi_{n l m}
$$

l is restricted to the values: $\begin{array}{lllll}0 & 1 & 2 & \ldots n-1\end{array}$
and is often designated by letter: s p d
The magnetic quantum number m describes the z component of the orbital angular momentum: $\quad \hat{l}_{z} \psi_{n l m}=\mathrm{R}_{n l} \Theta_{l m} \hat{l}_{z} \Phi_{m}=\mathrm{R}_{n l} \Theta_{l m} m \hbar \Phi_{m}=m \hbar \psi_{n l m}$
m is restricted to the values: $0 \quad \pm 1 \quad \pm 2 \ldots \pm l$
In a magnetic field, states with different m will differ in energy, the Zeeman effect.
The spin quantum number
$s \quad$ is not predicted by this level of theory.

H Atom Radial Wavefunctions

The solutions of the radial equation are associated Laguerre functions:

$$
\mathrm{R}_{n l}(r)=-\left\{\left[\frac{2 Z}{n a_{0}}\right]^{3} \cdot \frac{(n-l-1)!}{2 n[(n+l)!]^{3}}\right\}^{1 / 2} \mathrm{e}^{-\rho / 2} \rho^{l} \mathrm{~L}_{n+l}^{2 l+1}(\rho)
$$ where the Laguerre polynomial is given by

$$
\mathrm{L}_{n+l}^{2 l+1}(\rho)=\sum_{k=0}^{n-l-1}(-1)^{k+1} \frac{[(n+l)!]^{2}}{(n-l-1-k)!(2 l+1+k)!k!} \rho^{k}
$$

with $\quad \rho=\frac{2 \mu Z e^{2}}{\mathrm{n} \hbar^{2}\left(4 \pi \varepsilon_{0}\right)} \cdot r=\frac{2 Z}{n a_{0}} \cdot r \quad a_{0}=\frac{\hbar^{2}\left(4 \pi \varepsilon_{0}\right)}{\mu \mathrm{e}^{2}}$
$\xrightarrow{\uparrow \quad 2 \mathrm{~s} \quad n=2, l=0}$

$$
\xrightarrow{2 \mathrm{p} \quad n=2, l=1}
$$

number of radial nodes

$$
=n-l-1
$$

total number of nodes

$$
=n-1
$$

H Atom Radial Functions

For reference only

$$
\begin{aligned}
& \mathrm{R}_{10}(r)=\frac{2}{a_{0}^{3 / 2}} \exp \left(-\frac{r}{a_{0}}\right) \\
& \mathrm{R}_{20}(r)=\frac{2}{\left(2 a_{0}\right)^{3 / 2}}\left(1-\frac{r}{2 a_{0}}\right) \exp \left(-\frac{r}{2 a_{0}}\right) \\
& \mathrm{R}_{21}(r)=\frac{1}{\sqrt{3}\left(2 a_{0}\right)^{3 / 2}} \frac{r}{a_{0}} \exp \left(-\frac{r}{2 a_{0}}\right) \\
& \mathrm{R}_{30}(r)=\frac{2}{\left(3 a_{0}\right)^{3 / 2}}\left(1-\frac{2 r}{3 a_{0}}+\frac{2 r^{2}}{27 a_{0}^{2}}\right) \exp \left(-\frac{r}{3 a_{0}}\right) \\
& \mathrm{R}_{31}(r)=\frac{4 \sqrt{2}}{9\left(3 a_{0}\right)^{3 / 2}} \frac{r}{a_{0}}\left(1-\frac{r}{6 a_{0}}\right) \exp \left(-\frac{r}{3 a_{0}}\right) \\
& \mathrm{R}_{32}(r)=\frac{2 \sqrt{2}}{27 \sqrt{5}\left(3 a_{0}\right)^{3 / 2}}\left(\frac{r}{a_{0}}\right)^{2} \exp \left(-\frac{r}{3 a_{0}}\right)
\end{aligned}
$$

Radial Distribution Functions

$$
\psi_{n l m}=\mathrm{R}_{n l}(r) \mathrm{Y}_{l m}(\theta, \phi)
$$

Normalize Y_{00} over the surface area of a sphere of radius r :

$$
\int\left|\mathrm{Y}_{00}\right|^{2} \mathrm{~d} \tau=\int_{0}^{2 \pi} \int_{0}^{\pi} \mathrm{Y}^{*} \mathrm{Y} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=\frac{1}{4 \pi r^{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi=1
$$

In general, probability density of finding electron

$$
\text { at a point } \quad \begin{aligned}
& P(r, \theta, \phi)=\left|\psi^{2}\right| \mathrm{d} \tau=\mathrm{R}^{2} \mathrm{Y}^{2} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
& \text { at a distance } r \quad P(r)=\mathrm{R}^{2} \mathrm{~d} r \int_{0}^{2 \pi \pi} \int_{0} \mathrm{Y}^{2} r^{2} \sin \theta \mathrm{~d} \theta \mathrm{~d} \phi \\
&=4 \pi r^{2} \mathrm{R}^{2} \mathrm{~d} r \\
& \text { radial distribution function }
\end{aligned}
$$

How Big is the Hydrogen Atom?

The ground state of the H atom has $n=1, l=0, m=0 \quad \psi_{1 \mathrm{~s}}=\frac{1}{\sqrt{\pi a_{0}^{3}}} \mathrm{e}^{-r / a_{0}} \quad a_{0}=\frac{\hbar^{2}\left(4 \pi \varepsilon_{0}\right)}{\mu \mathrm{e}^{2}}$
The radial distribution function $\quad P(r)=4 \pi r^{2} \psi_{1 \mathrm{~s}}^{2}$

$$
=\frac{4}{a_{0}^{3}} r^{2} \mathrm{e}^{-2 r / a_{0}}
$$

has a maximum ...

$$
\ldots \text { at } r=a_{0}
$$

$$
2 r \mathrm{e}^{-2 r / a_{0}}-\frac{2 r^{2}}{a_{0}} \mathrm{e}^{-2 r / a_{0}}=0
$$

The Bohr radius a_{0} is the most probable radius at which the electron can be found.

This is not the same as the average distance of the electron from the nucleus, which is
the expectation value: $\quad\langle r\rangle_{1 \mathrm{~s}}=\frac{1}{\pi a_{0}^{3}} \int \mathrm{e}^{-r / a_{0}} \mathrm{e}^{-r / a_{0}} \mathrm{~d} \tau$

$$
=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} \mathrm{e}^{-2 r / a_{0}} \mathrm{~d} r
$$

$$
=\frac{3}{2} a_{0}
$$

Shapes of H Atom Orbitals

s orbitals

$$
\mathrm{Y}_{l m}=\mathrm{Y}_{00}=\frac{1}{\sqrt{4 \pi}} \quad \text { i.e. spherical symmetry, }
$$

but the amplitude and sign of $\psi_{n s}$ change according to R_{nl}.

2p orbitals

$$
\begin{gathered}
\mathrm{Y}_{10} \propto \cos \theta \\
\mathrm{Y}_{11} \propto \sin \theta \mathrm{e}^{\mathrm{i} \mathrm{\phi}} \\
\mathrm{Y}_{1-1} \propto \sin \theta \mathrm{e}^{-\mathrm{i} \phi}
\end{gathered}
$$

Construct a pair of real functions:
$\left|2 \mathrm{p}_{x}\right\rangle \propto \frac{1}{2}\left(\mathrm{Y}_{11}+\mathrm{Y}_{1-1}\right) \propto \sin \theta \cos \phi$
$\left|2 \mathrm{p}_{y}\right\rangle \propto \frac{1}{2 \mathrm{i}}\left(\mathrm{Y}_{11}-\mathrm{Y}_{1-1}\right) \propto \sin \theta \sin \phi$

Shapes of H Atom Orbitals (cont.)

3p orbitals

3d orbitals

$$
\mathrm{Y}_{l m}=\mathrm{Y}_{20} \propto\left(3 \cos ^{2} \theta-1\right)
$$

$$
\begin{aligned}
\left|3 \mathrm{~d}_{x z}\right\rangle & \propto \frac{1}{2}\left(\mathrm{Y}_{21}+\mathrm{Y}_{2-1}\right) \propto \sin \theta \cos \theta \cos \phi \\
\left|3 \mathrm{~d}_{y z}\right\rangle & \propto \frac{1}{2 \mathrm{i}}\left(\mathrm{Y}_{21}-\mathrm{Y}_{2-1}\right) \propto \sin \theta \cos \theta \sin \phi \\
\left|3 \mathrm{~d}_{x^{2}-y^{2}}\right\rangle & \propto \frac{1}{2}\left(\mathrm{Y}_{22}+\mathrm{Y}_{2-2}\right) \propto \sin ^{2} \theta \cos 2 \phi \\
\left|3 \mathrm{~d}_{x y}\right\rangle & \propto \frac{1}{2 \mathrm{i}}\left(\mathrm{Y}_{22}-\mathrm{Y}_{2-2}\right) \propto \sin ^{2} \theta \sin 2 \phi
\end{aligned}
$$

The Spectrum of Atomic Hydrogen

$E_{n}=-\frac{R_{\mathrm{H}}}{n^{2}} \quad$ where R_{H} is known as the Rydberg constant: $R_{\mathrm{H}}=\frac{\mu \mathrm{e}^{4}}{2 \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}=\frac{\mu \mathrm{e}^{4}}{8 h^{2} \varepsilon_{0}{ }^{2}} \quad \mathrm{~J}$
Spectral transitions are governed by selection rules: $\Delta n=$ any integer, $\Delta l= \pm 1, \quad \Delta m=0$

The Spectra of Hydrogen-like Atoms

Li atom

Hydrogen-like: (core) ns ${ }^{1}$
e.g. Alkali metal atoms, $\mathrm{Be}^{+}, \mathrm{B}^{++}, \ldots$

The core electrons influence the characteristic spectrum arising from the single outermost electron by shielding the nuclear charge to some extent. The orbital energies depend on l as a result of differing penetration of the core.

