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Molecular Vibrations

Near the minimum 
the curve is roughly parabolic, 
so bond vibrations are often treated as if harmonic.

The asymmetric distortion from the parabola is called anharmonicity.

In general, the vibrations of a polyatomic molecule involve motion of all nuclei about 
the molecule’s centre of mass.

In some cases the normal modes of vibration can be approximated by motion of 
individual pairs of nuclei, which can be treated as if they are diatomic molecules.

To solve the Schrödinger Equation we need to know the potential energy for the 
interaction between the two atoms.

The energy of a diatomic molecule 
varies with bond length:

E(r)
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At rAB = ∞ the molecule AB
dissociates into atoms A and B
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The Morse Potential
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The Morse potential is empirical.  It has the correct properties to model vibrational 
potential.  It does not represent any theory.
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The Simple Harmonic Oscillator
A harmonic oscillator has a restoring force 
proportional to the deviation from equilibrium:
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The general solution is
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F = k x k is the force constant

Examples:  simple pendulum, vibrating spring, bond vibration.
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Simple Harmonic Oscillator – 2

Note the similarity to the 
particle in a box 
wavefunctions. 

A new feature is the
penetration of the 
potential at low n.

Eigenfunctions

Eigenvalues

The energy levels are equally spaced

There is zero-point energy.
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The Anharmonic Oscillator – 1

If the Schrödinger Equation is 
solved for the Morse potential the 
vibrational energy levels converge
as the quantum number rises:
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between levels tends to 
zero for large r.
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Vibrational Spectra of Diatomic Molecules

Selection rules

The vibration must change the dipole moment.  
Therefore, only heterodiatomics have IR spectra.

Δn = ±1   
In a harmonic system this would give only one transition frequency: ΔE = ω = hν
For anharmonic systems

The Δn = ±1  selection rule is relaxed in anharmonic systems;
Δn = ±2, ±3, … are “partially” allowed.
ν(0→1) is called the fundamental.
ν(0→2) and ν(0→3) are the first and second overtones.

Intensities
For typical molecules at room temperature so most molecules are 
in the lowest vibrational state, and give a single strong fundamental absorption 
frequency.  Overtone frequencies are much weaker.

[ ]e1 2 ( 1)E h x nΔ = υ = ω − +

vib B10E k TΔ
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The Anharmonic Oscillator – 2
If the Schrödinger Equation is 
solved for the Morse potential the 
vibrational energy levels converge
as the quantum number rises:
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Rotation-Vibration Spectra of Diatomics
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Normal Modes

i.e. the potential energy is diagonal just like the kinetic energy.
This general treatment applies to all 3N degrees of freedom,
but 3 of these are translational, 3 are rotational (2 for linear molecules).
Thus 3N-6 displacements correspond to vibrations  (3N-5 for linear molecules).

In general, the nuclei of a vibrating polyatomic molecule undergo complex movement 
about their equilibrium positions; but it is always possible to decompose this motion 
into a sum of vibrations – normal modes – for which the deviations are in phase.
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Normal Coordinates are defined 
as the linear combinations

q = mass-weighted 
coordinate
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Generalized Force Constant: Evaluated at the equilibrium position 
i and j both range from 1 to 3N.
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Vibrational Spectra of Polyatomics
Once the complex vibrational motion of a molecule has been decomposed into normal 
modes the vibrational frequencies, zero-point energies, etc. associated with each mode 
can be treated to a good approximation as independent of each other.
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Each mode can be treated as a harmonic oscillator.

Electric dipole transitions are 
only allowed for modes in 
which the dipole moment 
changes.  Such modes are 
called IR active.
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Normal modes for triatomic molecules


