Heat Engines

A heat engine is a system capable of transforming heat into work by some cyclic process.

The 2nd Law states that an isothermal cyclic process can not produce net work.

The efficiency of a heat engine is defined as the ratio of the work produced to the heat input:

A heat pump is a heat engine in reverse. Work is needed to transfer heat from a lower to a higher temperature reservoir.

The Carnot Cycle

step	W	q	ΔU
$\overline{A \rightarrow B}$	$-nRT_{\rm H}\ln(V_{\rm B}/V_{\rm A})$	$-w_{AB}$	0
$B \rightarrow C$	$\Delta {U}_{ m BC}$	0	$-C_V(T_{\rm H}-T_{\rm L})$
$C \rightarrow D$	$-nRT_{\rm L}\ln(V_{\rm D}/V_{\rm C})$	$-w_{\rm CD}$	0
$D \rightarrow A$	$\Delta {U}_{ m DA}$	0	$C_V(T_{\rm H}-T_{\rm L})$
Total	$nR(T_{\rm H}-T_{\rm L})\ln(V_{\rm A}/V_{\rm B})$	$-W_{\rm cyc}$	0

$$\varepsilon = \frac{w_{\text{out}}}{q_{\text{in}}} = \frac{nR(T_{\text{H}} - T_{\text{L}})\ln(V_{\text{A}}/V_{\text{B}})}{nRT_{\text{H}}\ln(V_{\text{A}}/V_{\text{B}})} = 1 - \frac{T_{\text{L}}}{T_{\text{H}}}$$
for best efficiency,
maximize T_{H}
minimize T_{H}

Entropy Changes in the Carnot Cycle

 $-w_{\text{cycle}} = \oint P dV$ = area of PV plot

 $=q_{\rm cycle}$

Isothermal expansion $(1 \rightarrow 2)$:

$$\Delta U = 0 \implies -w = q > 0 \implies \Delta S = \frac{q}{T} > 0$$

Isothermal compression (4 \leftarrow 3): $\Delta S < 0$

Adiabatic steps (2 \rightarrow 3 and 1 \leftarrow 4): $q = 0 \implies \Delta S = 0$

