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Opposing Reactions – Relaxation
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If equilibrium is disturbed by an amount x, so that
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This exponential relaxation of concentrations is the basis 
for several jump methods of studying fast reaction kinetics.
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Parallel Reactions – Competition

Consider a molecule that can 
react by two different routes: A

C

Bkb

kc

The overall decay of A depends on both reactions:

( ) ( )b c
b c b c 0e

k k tda k a k a k k a a a
dt

− +− = + = + =⇒

The rate of formation of each product depends on both rate 
constants:

Define a = [A], b = [B], c =[C].
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This is the basis for competition kinetics, whereby an 
unknown rate constant is determined from a known rate 
constant and the ratio of competitive products.

The above treatment assumes kinetic control.  In contrast, at 
equilibrium, 
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Consecutive Reactions
Simplest case - two first-order steps

For k1 >> k2 the kinetics can be considered as two steps:
1. At short times b increases as a falls. 
2. At longer times (k1t >> 0), c increases as b falls.
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The Steady-State Approximation

Although  b is not constant, it changes at a much 
smaller rate than a or c.
This is the essence of the steady-state approximation.
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After the induction period, i.e. for k2t >> 0,
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An Example of a Complex Mechanism
Consider the overall reaction

2NO + O2 → 2NO2

It is found experimentally to be third order overall, second 
order in NO, first order in O2.  It is much too fast to be a 
termolecular process
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Apply the steady-state approximation to [N2O2]
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This is an example of a pre-equilibrium mechanism.
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Atom/Radical Combination Reactions
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In low pressure gases, atoms 
seem to react slower than 
expected because the 
combination product falls 
apart in the period of a 
molecular vibration (~ 10-14 s).

A + B → (A-B)* → A + B

If A and B are polyatomic radicals, (A-B)* may live longer (e.g. 
10-9 s), by distribution of De among different vibrational modes.

For efficient reaction a third body is needed:
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Enzyme Kinetics 1
Another example of a pre-equilibrium mechanism is one 
used to model the kinetics of enzyme action:
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Applying the steady-state approximation to the bound state,
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Enzyme Kinetics 2
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Write the Michaelis-Menten equation in reciprocal form:
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Diffusion-limited Kinetics

Apply the steady-state approximation to {AB}:
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Intermediate situations can be described by:
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The effective rate constant has two limits:
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For fast reactions in liquids, the rate-determining step can 
be diffusion of the reactants to form the encounter pair:
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Diffusion-limited Rate Constants
The diffusion –limited rate constant can be calculated:
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Assuming the hydrodynamic radius ≈ reaction radius,
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For reactants of similar size,
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The rate constant is determined by solvent properties!
The viscosity dominates the temperature dependence.


