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T Dependence of Complex Reactions
Assume some complex reaction

for which the overall reaction rate constant can be 
expressed in terms of the elementary steps:
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The overall “activation energy” may be negative, if ni
is negative and the corresponding Ei is large enough. 
Also, for a pre-equilibrium reaction where overall 1 2k K k=
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E2 is positive but ∆H can be negative.
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Chain Reactions
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Important examples include polymerization, 
combustion, photochemical smog production and the 
depletion of stratospheric ozone by CFCs.

R is often, but not always, a free radical.
Initiation may be thermal, photochemical, radiolysis, …
The overall reaction is determined by adding the 
propagation steps:

1 2B C P P+ → +

The net effect is catalysis by the CFC of the reaction

3 2O O 2O⋅ + →
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Rice-Herzfeld Mechanism
e.g. for the thermal decomposition of acetaldehyde
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Write steady-state equations for [CHO], [H], [CH3], [CH3CO]:
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An Explosive Reaction

2 2 22H O 2H O+ →
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Overall:

At 700 K and 0.1 bar O2, 

each initial H atom → 1013 H atoms in 0.3 s.
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Branching Chain Reactions
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2 Branching

3 Propagation

4 Termination  (wall)

[R] increases

[R] decreases
(combination)

The steady-state approximation does not apply.

If n is the number of radicals at time t,
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The exponential 
increase in n for 
φ > 0 leads to 
explosion.
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Explosion Limits

At pressures below 1,
! wall termination is dominant
! the limit depends on surface composition and area
! the limit is altered by the size of the reaction vessel

Between 1 and 2,
! is the explosion peninsula
! the limits change with temperature because 

branching reactions are T dependent, diffusion less so
Between 2 and 3,

! gas phase termination reactions are dominant
At pressures above 3,

! reaction products are important
! heat from exothermic reactions → thermal explosion
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Autocatalysis

( )( )

( )( )

( ) ( ) ( )

( )
( ) ( )

( ) ( )
( )

0 0

0 0

0 00

0 0 0 00

0 0 0
0 0

00

0 0 0 0

[A] ,   [P]

1 1 1

1 ln ln

1

a

n

r te

l

x

x

x

da dx a x p x
dt dt

dx k a x p x
dt

dxkt
a x p x

dx
a p a x p x

a x p x
a p

p xa
a p a x p

= − = = − = +

= − +

 
=  

− + 

 
= + + − + 

= − − + +  +

 +
=  

+ − 

∫

∫

( )

( )
( )

0 0 0 0

0

0

0

= , /

1 /
ln

1

Substi

/

e 1/
1 e

tute

t

t

a p k p a

x p
t

x p

x p
α

α

α + β =

+
α =

−β

−
=

+β

PA +   P2k→

αt

x/p0

asymptote at x = a0

exponential increase



3/27/2005CHEM 360 Spring 2004Paul Percival

Oscillations in Gas Phase Kinetics

Consider the concentration profile of an intermediate in the 
H2 + O2 reaction.

t

conc.

decay when 
reactants used up

exponential rise due to 
autocatalysis

What if more reactant is supplied?

conc.

t
Examples:

Flaring of phosphorus in a loosely stoppered flask 
(Robert Boyle, 17th century)

Cool flames = limited combustion of hydrocarbons due to 
“long-lived” intermediates which damp the explosion.

Pre-ignition (autoignition) producing “knock” in auto engines.
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Cool Flame Oscillations
Hydrocarbon fuels spontaneously ignite in the presence of O2
at T > 400-500 K.

“True” ignition gives CO, CO2, H2O and T increases ~ 1000 K.

“Cool” flames produce ROH, RCHO, RCOOH and ∆T ~ 100 K
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Oscillations occur because of both chemical and thermal 
feedback.

2R  + O ROO⋅ ⋅!

high T

low T
chain branching
thermal acceleration

chain termination
thermal damping
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Oscillating Reactions

The Lotka-Volterra Mechanism
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Oscillating Reaction Models
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The B-Z reaction is of 
this general form, with

X = HBrO2

Y = Br–

Z = 2Ce4+

18 steps, 21 species!


