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Partial Differentiation
for functions of more than one variable:  f=f(x, y, …)
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for a real single-value function f of two independent variables,
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Partial Derivative Relations
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• Partial derivatives can be taken in any order.
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• Taking the inverse:
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• To find the third partial derivative:
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• Chain Rule:
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Partial Derivatives in Thermodynamics
From the generalized equation of state for a closed system,
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six partial derivatives can be written:

but given the three inverses, e.g

and the chain rule
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there are only two independent “basic properties of 
matter”.  By convention these are chosen to be:

the coefficient of thermal expansion
(isobaric), and

The third derivative is simply
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the coefficient of isothermal compressibility.
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The Euler Relation

Suppose ( ) ( ), ,z A x y dx B x y dyδ = +

Is δz an exact differential, i.e. dz?

dz is exact provided
yx

A B
y x
∂ ∂   =   ∂ ∂  

cross-
differentiation
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The corollary also holds.

State functions have exact differentials.

Path functions do not.

New thermodynamic relations may be derived from the 
Euler relation.
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e.g.  given that

it follows that


