Partial Differentiation

for functions of more than one variable: $f=f(x, y, \ldots)$
Take area as an example

$$
A=x y
$$

For an increase Δx in $x, \quad \Delta A_{1}=y \Delta x$
For an increase Δy in $y, \quad \Delta A_{2}=x \Delta y$
x constant
For a simultaneous increase

$$
\begin{aligned}
\Delta A & =(x+\Delta x)(y+\Delta y)-x y \\
& =y \Delta x+x \Delta y+\Delta x \Delta y \\
& =\frac{\Delta A_{1}}{\Delta x} \Delta x+\frac{\Delta A_{2}}{\Delta y} \Delta y+\Delta x \Delta y
\end{aligned}
$$

In the limits $\Delta x \rightarrow 0, \Delta y \rightarrow 0$

$$
\Delta A \rightarrow d A=\left(\frac{\partial A}{\partial x}\right)_{y} d x+\left(\frac{\partial A}{\partial y}\right)_{x} d y
$$

partial differential
for a real single-value function f of two independent variables,

$$
\left(\frac{\partial f}{\partial x}\right)_{y}=\lim _{\delta x \rightarrow 0}\left\{\frac{f(x+\delta x, y)-f(x, y)}{\delta x}\right\}
$$

Partial Derivative Relations

Consider $f(x, y, z)=0$, so $z=z(x, y)$

$$
d z=\left(\frac{\partial z}{\partial x}\right)_{y} d x+\left(\frac{\partial z}{\partial y}\right)_{x} d y
$$

- Partial derivatives can be taken in any order.

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}
$$

$$
\left[\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)_{x}\right]_{y}=\left[\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)_{y}\right]_{x}
$$

- Taking the inverse: $\left[\left(\frac{\partial z}{\partial x}\right)_{y}\right]^{-1}=\left(\frac{\partial x}{\partial z}\right)_{y}$
- To find the third partial derivative:

$$
\begin{aligned}
d z=0 & \Rightarrow\left(\frac{\partial z}{\partial y}\right)_{x} d y=-\left(\frac{\partial z}{\partial x}\right)_{y} d x \\
\left(\frac{\partial x}{\partial y}\right)_{z}=-\frac{(\partial z / \partial y)_{x}}{(\partial z / \partial x)_{y}} & =-\left(\frac{\partial z}{\partial y}\right)_{x}\left(\frac{\partial x}{\partial z}\right)_{y}
\end{aligned}
$$

- Chain Rule: $\quad\left(\frac{\partial x}{\partial y}\right)_{z}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial z}{\partial x}\right)_{y}=-1$ and

$$
\left(\frac{\partial y}{\partial x}\right)_{z}\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}=-1
$$

Partial Derivatives in Thermodynamics

From the generalized equation of state for a closed system,

$$
f(P, V, T)=0
$$

six partial derivatives can be written:

$$
\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

but given the three inverses, e.g

$$
\left[\left(\frac{\partial V}{\partial T}\right)_{P}\right]^{-1}=\left(\frac{\partial T}{\partial V}\right)_{P}
$$

and the chain rule $\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}\left(\frac{\partial P}{\partial V}\right)_{T}=-1$
there are only two independent "basic properties of matter". By convention these are chosen to be:
the coefficient of thermal expansion (isobaric), and

$$
\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

the coefficient of isothermal compressibility.

$$
\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

The third derivative is simply

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=-\frac{(\partial V / \partial T)_{P}}{(\partial V / \partial P)_{T}}=\frac{\alpha}{\kappa}
$$

The Euler Relation

Suppose

$$
\delta z=A(x, y) d x+B(x, y) d y
$$

Is δz an exact differential, i.e. $d z$?
$d z$ is exact provided $\quad\left(\frac{\partial A}{\partial y}\right)_{x}=\left(\frac{\partial B}{\partial x}\right)_{y} \quad \begin{aligned} & \text { cross- } \\ & \text { differentiation }\end{aligned}$
because then $\quad A=\left(\frac{\partial z}{\partial x}\right)_{y} \quad\left(\frac{\partial A}{\partial y}\right)_{x}=\frac{\partial^{2} z}{\partial y \partial x}$

$$
B=\left(\frac{\partial z}{\partial y}\right)_{x} \quad\left(\frac{\partial B}{\partial x}\right)_{y}=\frac{\partial^{2} z}{\partial x \partial y}
$$

The corollary also holds.
State functions have exact differentials.
Path functions do not.
New thermodynamic relations may be derived from the Euler relation.
e.g. given that

$$
\begin{gathered}
d U=T d S-P d V \\
\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
\end{gathered}
$$

