## Energy, Work and Heat

Energy is the capacity to do work. Its classification into:

kinetic<br>(by motion)<br>e.g. thermal

potential
(by position)
chemical, electrical

Is purely arbitrary!
Heat and work are not "types" of energy, but are processes involving transfer of energy. They appear and disappear at the system boundary. They are path variables.

Heat is the transfer of energy from one body to another of lower temperature.

Convention: if heat flows into the system, $q>0$.
Work is the transfer of energy by some mechanism other than temperature difference.

Convention: if work is done on the system, $w>0$.
Heat stimulates random motion.
Work stimulates organized motion.
Work "degrades" into heat.
$>$ qualitative observations by Count Rumford (Ben Thompson)
> quantitative measurements by James Joule

## The First Law of Thermodynamics

$q>0$ for heat flow into the system $w>0$ for work done on the system

For finite changes of state: $\quad \Delta U=q+w$
For infinitesimal changes:
$d U=\delta q+\delta w$
$U$ is the internal energy of the system.
When a system changes from one state to another along an adiabatic path, the amount of work done is the same, whatever the means employed.

$$
\begin{array}{ll}
\text { For } q=0, & w_{\mathrm{ad}}=U_{\text {final }}-U_{\text {initial }}=\Delta U \\
\text { For } q \neq 0, & q=\Delta U-w=w_{\mathrm{ad}}-w
\end{array}
$$

* The energy of an isolated system is constant.

$$
\text { For } q=0, w=0 \quad \Delta U=0
$$

$\Rightarrow$ No perpetual motion machines!
In any cyclic transformation the work done by a system on its surroundings is equal to the heat withdrawn from the surroundings.

$$
-\oint \delta w=\oint \delta q \quad \Leftrightarrow \quad \oint d U=0
$$

The energy of the universe is constant.

$$
\Delta U_{\text {system }}=-\Delta U_{\text {surroundings }}
$$

## Temperature

Two systems in thermal equilibrium are at the same temperature.

If system $A$ is in thermal equilibrium with system $B$, and $A$ is in thermal equilibrium with $C$, then $B$ must be in thermal equilibrium with $C$.
This is a statement of the zeroth law of thermodynamics.
Ideal gas temperature:

$$
T=\lim _{P \rightarrow 0}\left(\frac{P V}{n R}\right)
$$

Unit of temperature: $\quad 1$ Kelvin $=\frac{T(\text { triple point of water })}{273.16}$

The freezing point of water at 1 atm is 273.15 K . The boiling point of water at 1 atm is 373.12 K .

The Celsius scale is defined as $t /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15$
It is possible to define an absolute temperature scale (Kelvin scale) by considering the work done in an isothermal reversible expansion/compression.

$$
w=n R T \ln \frac{V_{1}}{V_{2}}
$$

## Pressure-Volume Work 1

Expansion

$$
\begin{aligned}
& P_{1}>m g / A \\
& P_{2}=P_{\mathrm{ex}}=m g / A
\end{aligned}
$$



$$
\begin{aligned}
w & =-(m g) h \\
& =-\left(P_{\mathrm{ex}} A\right) h \\
& =-P_{\mathrm{ex}}\left(V_{2}-V_{1}\right)
\end{aligned}
$$



Expansion into a vacuum

$$
P_{\mathrm{ex}}=0 \Rightarrow w=0
$$

Compression

$$
\begin{aligned}
& P_{1}<P_{\mathrm{ex}} \\
& P_{2}=P_{\mathrm{ex}} \\
& w=-P_{\mathrm{ex}}\left(V_{2}-V_{1}\right)
\end{aligned}
$$



## Pressure-Volume Work 2

Multi-stage Expansion


Reversible Expansion
Make steps so small that

$$
d P \rightarrow 0, d V \rightarrow 0
$$

Then $-\delta w=P_{\text {ex }} d V$

$$
\begin{aligned}
& =\left(P_{\text {int }}+d P\right) d V \\
& \rightarrow P_{\text {int }} d V \\
w & =\int_{\text {path }} d w=-\int_{1}^{2} P_{\text {int }} d V
\end{aligned}
$$



For ideal gases $\quad P_{\text {int }}=n R T / V$
and at fixed temperature $w_{\text {rev }}=-n R T \ln \left(\frac{V_{2}}{V_{1}}\right)=n R T \ln \left(\frac{P_{2}}{P_{1}}\right)$

## Pressure-Volume Work 3


compression

## \# expansion

Consider the cyclic path $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$

$$
\begin{aligned}
-w & =0+P_{3}\left(V_{3}-V_{1}\right)+0+P_{1}\left(V_{1}-V_{3}\right) \\
& =\left(P_{3}-P_{1}\right)\left(V_{3}-V_{1}\right)
\end{aligned}
$$

Consider the cyclic reversible path $1 \rightarrow 3 \rightarrow 1$

$$
\begin{aligned}
-w & =\int_{V_{1}}^{V_{3}} P d V+\int_{V_{3}}^{V_{1}} P d V \\
& =\int_{V_{1}}^{V_{3}} P d V-\int_{V_{1}}^{V_{3}} P d V=0
\end{aligned}
$$

Even for a cyclic process $w$ depends on path

$$
\oint d U=0 \quad \Leftrightarrow \quad-\oint \delta w=\oint \delta q
$$

## Energy vs. Enthalpy

For a change in state at constant volume, no expansion work is done, so $\quad \Delta U=q_{V}, \quad d U=\delta q_{V}$ However, for a change in state at constant pressure,

$$
\begin{array}{rl}
\Delta U=q_{P}+w, \quad d U=\delta q_{P}-P d V & \\
& \Delta U=\int_{1}^{2} d U=\int_{1}^{2} \delta q_{P}-\int_{V_{1}}^{V_{2}} P d V \\
& \\
U_{2}-U_{1}=q_{P}-P\left(V_{2}-V_{1}\right) & P \text { constant } \\
\left(U_{2}+P V_{2}\right)-\left(U_{1}+P V_{1}\right)=q_{P} & \\
\left(U_{2}+P_{2} V_{2}\right)-\left(U_{1}+P_{1} V_{1}\right)=q_{P} & P=P_{1}=P_{2}
\end{array}
$$

Enthalpy

$$
H=U+P V
$$

$$
\Delta H=q_{P}, \quad d H=\delta q_{P}
$$

$H$, being a function of state variables only, is also a state variable.

For a general change of state ( $P$ and $V$ may both change),

$$
\begin{aligned}
\Delta H & =\Delta U+\Delta(P V) \\
& =\Delta U+P \Delta V+V \Delta P+\Delta P \Delta V \\
d H & =d U+P d V+V d P
\end{aligned}
$$

## Heat Capacity

Transfer of heat to a system may result in a rise in $T$.

## $\delta q=C d T$

path function, so $C$ depends on conditions.
Define: $\quad \delta q_{V}=C_{V} d T \quad$ at constant volume, no work

$$
\delta q_{P}=C_{P} d T \quad \text { at constant pressure, only } P V \text { work }
$$

From 1st Law, $d U=\delta q+\delta w=\delta q-P_{\text {ex }} d V$

$$
d U=\delta q_{V} \text { for } d V=0
$$

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

Similarly

$$
\begin{aligned}
& d H=d U+P d V+V d P \\
& =(\delta q-P d V)+P d V+V d P \\
& =\delta q_{P} \text { for } d P=0 \\
& \quad C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}
\end{aligned}
$$

For ideal gases $\quad d H=d U+d(P V)=d U+n R d T$

$$
\begin{aligned}
& C_{P} d T=C_{V} d T+n R d T \\
& \bar{C}_{P}=\bar{C}_{V}+R
\end{aligned}
$$

## The Relation Between $C_{P}$ and $C_{V}$

$$
\begin{aligned}
C_{P}-C_{V} & =\left(\frac{\partial H}{\partial T}\right)_{P}-\left(\frac{\partial U}{\partial T}\right)_{V} \\
& =\left(\frac{\partial U}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}-\left(\frac{\partial U}{\partial T}\right)_{V}
\end{aligned}
$$

$$
H=U+P V
$$

But since $\quad d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V$

$$
\begin{aligned}
& \left(\frac{\partial U}{\partial T}\right)_{P}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P} \\
\Rightarrow & C_{P}-C_{V}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}+P\left(\frac{\partial V}{\partial T}\right)_{P}
\end{aligned}
$$

$\begin{array}{lcl}\text { work needed to } & \text { intermolecular } & \text { expansion } \\ \text { overcome } & \text { forces } & \end{array} \begin{aligned} & \text { per } \\ & \text { degree }\end{aligned}$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=\text { "internal pressure" }
$$

$\begin{aligned} & \text { For ideal } \\ & \text { gases }\end{aligned} \quad\left(\frac{\partial U}{\partial V}\right)_{T}=0, \quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{n R}{P} \Rightarrow C_{P}-C_{V}=n R$

For liquids
and solids $\quad\left(\frac{\partial V}{\partial T}\right)_{P} \quad$ is so small that $\quad C_{P} \approx C_{V}$

## Adiabatic Expansion 1

adiabatic $=$ insulated:

$$
\begin{aligned}
& \Delta U=w \quad d U=\delta w \\
& d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
& w=\int_{1}^{2} d U=\int_{T_{1}}^{T_{2}} C_{V} d T+\ldots(0 \text { for ideal gases }) \\
&=C_{V} \Delta T \text { if } C_{V} \text { is independent of } T
\end{aligned}
$$

For adiabatic expansion

$$
w \leqslant 0, \Delta U \leqslant 0 \Rightarrow T_{2} \leqslant T_{1}
$$

Free expansion:

$$
P_{\mathrm{ex}}=0 \Rightarrow w=0, \Delta T=0
$$

Fixed pressure:

$$
\begin{aligned}
w & =-P_{\mathrm{ex}} \Delta V \\
w & =\Delta U=C_{V} \Delta T \\
\Rightarrow \Delta T & =-\frac{P_{\mathrm{ex}} \Delta V}{C_{V}}
\end{aligned}
$$

Reversible expansion: $\quad P=P_{\text {ex }}$

$$
w=-\int_{V_{1}}^{V_{2}} P(V, T) d V
$$

Substitute appropriate equation of state.
Not useful if $T$ changes.

## Adiabatic Expansion 2

Reversible adiabatic expansion of ideal gases:

$$
\begin{aligned}
d U & =\delta w & \delta q=0 \\
C_{V} d T & =-P d V=-\frac{n R T}{V} d V & \text { ideal gases only } \\
\bar{C}_{V} \int_{1}^{2} \frac{1}{T} d T & =-R \int_{1}^{2} \frac{1}{V} d V & \\
\bar{C}_{V} \ln \left(T_{2} / T_{1}\right) & =-R \ln \left(V_{2} / V_{1}\right) & \\
& =-\left(\bar{C}_{P}-\bar{C}_{V}\right) \ln \left(V_{2} / V_{1}\right) & \\
\ln \left(T_{2} / T_{1}\right) & =-(\gamma-1) \ln \left(V_{2} / V_{1}\right) & \gamma=\frac{\bar{C}_{P}}{\bar{C}_{V}} \\
\frac{T_{2}}{T_{1}} & =\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} &
\end{aligned}
$$

Also, since

$$
\frac{P_{2} V_{2}}{P_{1} V_{1}}=\frac{T_{2}}{T_{1}}
$$

$$
\frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma} \quad \text { or } \quad P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}
$$

$$
\frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{(\gamma-1) / \gamma}
$$



## Types of Expansion Work - Summary

For all types of expansion $\quad \delta w=-P_{\text {ex }} d V$
For reversible changes $\quad P_{\mathrm{ex}}=P=P(V, T)$ in general In an irreversible expansion $P_{\text {ex }}<P, \quad(-w)<\left(-w_{\text {rev }}\right)$

For isothermal expansions T is held constant by leakage of heat into the system from the surroundings.
For an ideal gas $\quad\left(\frac{\partial U}{\partial V}\right)_{T}=0, \Delta U=0, q=w$
In an adiabatic expansion $\quad q=0$
so the internal energy must provide for the work: $w=\Delta U$

For reversible expansion of an ideal gas through a given volume change from the same initial state,

$$
\left(-w_{\text {isothermal }}\right)>\left(-w_{\text {adiabatic }}\right)
$$

since $U$ is continuously replenished by heat intake to keep the temperature constant.

