The Joule Expansion Experiment

For a closed system, the state function U is determined by T and V alone:

$$
\begin{aligned}
& d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V \\
& =C_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
\end{aligned}
$$

Joule tried to measure this partial derivative.

1. Gas in A , vacuum in B.
2. Open valve.
3. Any change in T ?

He found no change in temperature when the gas expanded from V_{A} to $V_{A}+V_{B}$, i.e. $q=0$. Also, no work was done (free expansion), so $w=0$. Conclusion: $\Delta U=0$ and hence

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=0 \quad \text { or } \quad U=U(T) \quad \text { only }
$$

Strictly only true for ideal gases.
Not true for liquids and solids, but since $\Delta U \approx(\partial U / \partial V)_{T} \Delta V$ and ΔV is very small, the effect of ΔV on U is usually ignored.

Pressure Dependence of Enthalpy

For a closed system, the state function H is determined by T and P alone:

$$
\begin{aligned}
d H & =\left(\frac{\partial H}{\partial T}\right)_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P \\
& =C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P
\end{aligned}
$$

For ideal gases $H=U+P V=U+n R T$

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=\left(\frac{\partial U}{\partial P}\right)_{T}=0
$$

Not true for real gases, liquids and solids!

$$
\begin{gathered}
d H=d U+P d V+V d P \\
C_{P} d T+\left(\frac{\partial H}{\partial P}\right)_{T} d P=C_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V+P d V+V d P
\end{gathered}
$$

At fixed temperature, $d T=0$

$$
\left(\frac{\partial H}{\partial P}\right)_{T}=\left(\frac{\partial U}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial P}\right)_{T}+P\left(\frac{\partial V}{\partial P}\right)_{T}+V \approx V
$$

small for liquids and solids
Investigate real gases at constant enthalpy, i.e. $d H=0$

$$
\Rightarrow\left(\frac{\partial H}{\partial P}\right)_{T}=-C_{P}\left(\frac{\partial T}{\partial P}\right)_{H}
$$

The Joule-Thomson Experiment

Joule-Thomson Coefficient

$$
\mu_{\mathrm{JT}}=\left(\frac{\partial T}{\partial P}\right)_{H}
$$

Pump gas through throttle (hole or porous plug) $P_{1}>P_{2}$

Keep pressures constant by moving pistons.
Work done by system

$$
-w=P_{2} V_{2}-P_{1} V_{1}
$$

Since $q=0$

$$
\begin{aligned}
\Delta U=U_{2}-U_{1} & =w=P_{1} V_{1}-P_{2} V_{2} \\
\Rightarrow U_{2}+P_{2} V_{2} & =U_{1}+P_{1} V_{1} \\
H_{2} & =H_{1} \quad \text { constant enthalpy }
\end{aligned}
$$

Measure change in T of gas as it moves from side 1 to side 2 .

$$
\mu_{\mathrm{JT}}=\left(\frac{\Delta T}{\Delta P}\right)_{\Delta P \rightarrow 0}
$$

A modern, more direct experiment $\begin{aligned} & \text { uses similar apparatus but with a } \\ & \text { heater to offset the temperature drop. }\end{aligned} \quad\left(\frac{\partial H}{\partial P}\right)_{T}=\lim _{\Delta P \rightarrow 0}\left(\frac{q}{\Delta P}\right)$

The Linde Refrigerator

For most gases at room temperature $\mu_{\mathrm{JT}}>0$ so sudden (adiabatic) expansion results in a drop in T .
This is the basis of operation of the Linde refrigerator and gas liquefaction.

In general, μ_{JT} depends on T and can even change sign.

The Molecular Interpretation of U

What is U ? ΔU can be related to thermochemical observables:

$$
\begin{aligned}
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}, \quad \Delta U & =\int_{T_{1}}^{T_{2}} C_{V} d T \quad \text { for ideal gases } \\
U(T)-U(0) & =\int_{0}^{T} C_{V} d T
\end{aligned}
$$

Can U be calculated from molecular properties?

$$
U=\sum_{\text {molecules }} u=N\langle u\rangle \quad \text { ignoring intermolecular forces }
$$

Classically, <u> is given by the Equipartition Law:
"The average energy of each different mode of motion of a molecule is $1 / 2 k T$."

$$
\begin{aligned}
k & =\text { Boltzmann constant }=R / L \\
& =1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}
\end{aligned}
$$

Implicit in this "law" is the concept that there is no coupling between molecular modes of motion.

Total:

$$
u=\varepsilon_{\mathrm{tr}}+\varepsilon_{\mathrm{rot}}+\varepsilon_{\mathrm{vib}}\left(+\varepsilon_{\mathrm{el}}\right)
$$

Translation: $\varepsilon_{\mathrm{tr}}=\frac{1}{2} m v^{2}=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}+\frac{1}{2} m \dot{z}^{2}$
Rotation: $\quad \varepsilon_{\text {rot }}=\frac{1}{2} I_{x} \omega_{x}^{2}+\frac{1}{2} I_{y} \omega_{y}^{2}+\frac{1}{2} I_{z} \omega_{z}^{2}$
Vibration: $\quad \varepsilon_{\text {vib }}=T+V=\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} k x^{2}$ per mode
no. of vib. modes $=\left\{\begin{array}{l}3 n-6 \text { for non-linear molecules } \\ 3 n-5 \text { for linear molecules }\end{array}\right.$

The Molecular Interpretation of U (cont.)

When quantum effects can be ignored, the average energy of every quadratic term in the energy expression has the same value, $1 / 2 k T$.

Monoatomic gases

$$
<u>=\frac{3}{2} k T, \quad \bar{C}_{V}=\left(\frac{\partial \bar{U}}{\partial T}\right)_{V}=1.5 R
$$

Diatomic gases
Linear polyatomics

$$
\begin{aligned}
\langle u\rangle= & \left(\frac{3}{2}+1+1\right) k T, \quad \bar{C}_{V}=3.5 R \\
<u>= & \left(\frac{3}{2}+1+3 n-5\right) k T \\
& \quad \text { e.g. for } n=3, \bar{C}_{V}=6.5 R
\end{aligned}
$$

Non-linear molecules

$$
\begin{aligned}
<u>= & \left(\frac{3}{2}+\frac{3}{2}+3 n-6\right) k T \\
& \text { e.g. for } n=3, \bar{C}_{V}=6.0 R
\end{aligned}
$$

Experimental observations do not agree with these predictions, except for monoatomic gases. In particular:

- The predicted values are too high.
- Experimental values are temperature-dependent.

Accurate calculations are provided by statistical mechanics, where it can be shown that the equipartition principle only holds in the limit of high temperature, specifically for the condition $k T \gg \Delta E$, where ΔE is the appropriate spacing of energy levels.

Equipartition \equiv free transfer of energy between modes

Temperature Dependence of C_{V}

$$
\begin{aligned}
C_{V} & =\left(\frac{\partial U}{\partial T}\right)_{V}, \text { where } U-U_{0}=N\left(<\varepsilon_{\mathrm{tr}}>+\left\langle\varepsilon_{\mathrm{rot}}>+\ldots\right)\right. \\
& =C_{V}^{\mathrm{tr}}+C_{V}^{\text {rot }}+C_{V}^{\text {vib }}+C_{V}^{\mathrm{el}}
\end{aligned} \bar{C}_{v}^{\mathrm{tr}}=1.5 R \text { for all } T .
$$

e.g. for a diatomic molecule:

Temperature Dependence of H

Interactions between molecules also contribute to the heat capacity of real systems. In particular, first-order phase changes often involve large energy changes. These are usually measured at constant pressure and expressed as enthalpies.

In general, $\quad H=a+b T+c T^{2}+\ldots \quad$ for each phase

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}=b+2 c T+\ldots
$$

