Spontaneous Change

For a system in thermal equilibrium with its surroundings,

$$
d S \geqslant \frac{\delta q}{T}
$$

Clausius inequality
At constant volume:

$$
\begin{array}{rr}
d q_{V}=d U & \text { no work } \\
T d S-d U \geqslant 0 & \\
(d S)_{U, V} \geqslant 0 & \text { isolated system } \\
(d U)_{S, V} \leqslant 0 &
\end{array}
$$

At constant pressure:

$$
\begin{gathered}
d q_{P}=d H \\
T d S-d H \geqslant 0 \\
(d H)_{S, P} \leqslant 0
\end{gathered}
$$

PV work only

For convenience, define:

$$
\begin{array}{ll}
A=U-T S & d A=d U-T d S-S d T \\
G=H-T S & d G=d H-T d S-S d T
\end{array}
$$

Then the conditions for spontaneous change become:

$$
(d A)_{T, V} \leqslant 0 \quad(d G)_{T, P} \leqslant 0
$$

Helmholtz Energy A

Helmholtz energy; Helmholtz free energy; Helmholtz function; Maximum work function

For spontaneous change at constant T and V

$$
d A=d U-T d S \leqslant 0
$$

Note that it is the total function A that tends to a minimum; this is not the same as minimizing U and maximizing S.

Maximum Work
Combine $\quad d U=\delta q+\delta w$ and $T d S \geqslant \delta q$

$$
\Rightarrow \quad d U \leqslant T d S+\delta w
$$

equality for reversible change
Word done by
the system

$$
(-\delta w) \leqslant T d S-d U
$$

$$
(-\delta w)_{\max }=T d S-\delta q_{\mathrm{rev}}-\delta w_{\mathrm{rev}}=-\delta w_{\mathrm{rev}}
$$

A system does maximum work when it is operating reversibly.
But

$$
(d A)_{T}=d U-T d S=d U-\delta q_{\mathrm{rev}}=\delta w_{\mathrm{rev}}
$$

Therefore, for macroscopic changes

$$
-w_{\max }=-\Delta A=T \Delta S-\Delta U
$$

constant T
$(-w)$ can be more or less than ΔU according to the sign of ΔS. For $\Delta S>0$, heat flows into the system to fuel the extra work.

Gibbs Energy G

Gibbs free energy, Gibbs function

* Very important in chemistry since it tells whether a particular reaction can proceed at a given T and P.
For spontaneous change,

$$
(d G)_{T, P} \leqslant 0 \quad \Delta G=G_{\text {products }}-G_{\text {reactants }} \leqslant 0
$$

$\Delta G_{T, P}$ for reactions can be calculated from tabulated data

$$
\Delta G^{\circ}(T)=\Delta H^{\circ}(T)-T \Delta S^{\circ}(T)
$$

If ΔH is	and ΔS is	then ΔG	the reaction proceeds
-ve	+ ve	<0	at all temperatures
+ve	-ve	>0	at no temperatures
-ve	-ve	\ldots	if $T<\Delta H / \Delta S$
+ +ve	+ +e	\ldots	if $T>\Delta H / \Delta S$

Maximum Work:

$$
\begin{aligned}
(d G)_{T} & =d H-T d S \\
(d G)_{T, P} & =d U+P d V-T d S \\
& =\delta q_{\mathrm{rev}}+\delta w_{\mathrm{rev}}+P d V-T d S \\
& =\delta w_{\mathrm{rev}}+P d V \\
& =\delta w_{\max }(\text { non }-P V) \\
\Delta w_{\max }(& \text { non }-P V)=\Delta G \quad \text { constant } T, P
\end{aligned}
$$

Basic Thermodynamic Relations 1

Laws

$$
\begin{align*}
& d U=\delta q-P d V \tag{1}\\
& d S=\delta q_{\mathrm{rev}} / T \tag{2}
\end{align*}
$$

Definitions

$$
\begin{align*}
& H=U+P V \tag{3}\\
& A=U-T S \tag{4}\\
& G=H-T S \tag{5}
\end{align*}
$$

Fundamental Equations

$$
\begin{align*}
& d U=T d S-P d V \tag{6}\\
& d H=T d S+V d P \tag{7}\\
& d A=-S d T-P d V \tag{8}\\
& d G=-S d T+V d P \tag{9}
\end{align*}
$$

Partial Differentials

$$
\begin{array}{ll}
\left(\frac{\partial U}{\partial S}\right)_{V}=T & \left(\frac{\partial U}{\partial V}\right)_{S}=-P \\
\left(\frac{\partial H}{\partial S}\right)_{P}=T & \left(\frac{\partial H}{\partial P}\right)_{S}=V \\
\left(\frac{\partial A}{\partial T}\right)_{V}=-S & \left(\frac{\partial A}{\partial V}\right)_{T}=-P \\
\left(\frac{\partial G}{\partial T}\right)_{P}=-S & \left(\frac{\partial G}{\partial P}\right)_{T}=V
\end{array}
$$

Basic Thermodynamic Relations 2

Maxwell Relations
\quad From (6) $\quad\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$
From (7) $\quad\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$
From (8) $\quad\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V}$
From (9) $\quad-\left(\frac{\partial S}{\partial P}\right)_{T}=\left(\frac{\partial V}{\partial T}\right)_{P} \quad \ldots$ (13)
Thermodynamic Equation of State

$$
\begin{align*}
& d U=T d S-P d V \tag{6}\\
& \left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-P
\end{align*}
$$

How Free Energy Depends on T

$$
\begin{array}{ccc}
& G=H-T S & \ldots(1) \\
& \text { definition } \\
\Delta G=\Delta H-T \Delta S & \ldots(2) & \text { constant T } \\
d G=V d P-S d T & \ldots \text { (3) } & \text { fundamental eqn. } \\
& \left(\frac{\partial G}{\partial T}\right)_{P}=-S=\frac{G-H}{T} & \text { from (1) } \tag{5}\\
\therefore \quad & \left(\frac{\partial G}{\partial T}\right)_{P}-\frac{G}{T}=-\frac{H}{T} & \ldots \text { (4) } \\
\text { But } \quad & \left(\frac{\partial(G / T)}{\partial T}\right)_{P}=\frac{1}{T}\left(\frac{\partial G}{\partial T}\right)_{P}-\frac{G}{T^{2}} & \ldots \text { (5) }
\end{array}
$$

$\begin{aligned} & \text { Gibbs-Helmholtz } \\ & \text { Equation }\end{aligned} \quad\left(\frac{\partial(G / T)}{\partial T}\right)_{P}=-\frac{H}{T^{2}}$
alternative form: $\quad\left(\frac{\partial(G / T)}{\partial(1 / T)}\right)_{P}=H$
By applying the Gibbs-Helmholtz equation to both reactants and products of a chemical reaction,

$$
\Rightarrow \quad\left(\frac{\partial(\Delta G / T)}{\partial T}\right)_{P}=-\frac{\Delta H}{T^{2}}
$$

How Free Energy Depends on P

$$
\begin{aligned}
& \left(\frac{\partial G}{\partial P}\right)_{T}=V \\
& \Delta G=G_{2}-G_{1}=\int_{1}^{2} V d P
\end{aligned}
$$

For solids and liquids V does not change much with P, so

$$
G_{2}(T) \approx G_{1}(T)+V\left(P_{2}-P_{1}\right)
$$

For a perfect gas $\quad V=\frac{n R T}{P}$

$$
\begin{gathered}
\Delta G_{T}=n R T \ln \left(P_{2} / P_{1}\right) \\
G=G^{\circ}(T)+n R T \ln \left(P / P^{\circ}\right)
\end{gathered}
$$

where G° is the standard free energy defined at $P^{\circ}=1$ bar

The chemical potential for a pure substance is the molar Gibbs energy:

$$
\mu=\bar{G}=\frac{G}{n}
$$

\therefore For a perfect gas

$$
\mu=\mu^{\circ}+R T \ln \left(P / P^{\circ}\right)
$$

The Chemical Potential

So far, our thermodynamic relations apply to closed systems. However, G, U, H, etc. are extensive properties.

Partial molar quantities are used to describe quantities which depend on composition.

$$
\begin{aligned}
\bar{J}_{i} & =\left(\frac{\partial J}{\partial n_{i}}\right)_{T, P, n_{j \neq i}} \quad J=U, H, S, A, G, V \\
J & =\sum_{i} n_{i} \bar{J}_{i}
\end{aligned}
$$

In general $d G=\left(\frac{\partial G}{\partial P}\right)_{T, n_{1}, n_{2} \ldots} d P+\left(\frac{\partial G}{\partial T}\right)_{P, n_{1}, n_{2} \ldots} d T$

$$
+\left(\frac{\partial G}{\partial n_{1}}\right)_{T, P, n_{2} \ldots} d n_{1}+\left(\frac{\partial G}{\partial n_{2}}\right)_{T, P, n_{1}, n_{3} \ldots} d n_{2}+\ldots
$$

Chemical Potential $\quad \mu_{i}=\left(\frac{\partial G}{\partial n_{i}}\right)_{P, T, n_{j \neq i}}$
Fundamental Equations $\quad d U=T d S-P d V+\sum \mu_{i} d n_{i}$

$$
d H=T d S+V d P+\sum \mu_{i} d n_{i}
$$

etc.

$$
\Rightarrow \mu_{i}=\left(\frac{\partial U}{\partial n_{i}}\right)_{V, S}=\left(\frac{\partial H}{\partial n_{i}}\right)_{P, S}=\left(\frac{\partial A}{\partial n_{i}}\right)_{V, T}
$$

Free Energy of Mixing 1

Consider the mixing of two ideal gases A and B at constant T and P.

Before: $\quad G_{1}=n_{\mathrm{A}} \mu_{\mathrm{A}}($ pure $)+n_{\mathrm{B}} \mu_{\mathrm{B}}($ pure $)$
where $\quad \mu_{\mathrm{A}}($ pure $)=\mu_{\mathrm{A}}^{\circ}+R T \ln \left(P / P_{0}\right)$
After mixing: $G_{\mathrm{A}}=n_{\mathrm{A}}\left\{\mu_{\mathrm{A}}^{\circ}+R T \ln \left(p_{\mathrm{A}} / P_{0}\right)\right\}$

$$
\begin{aligned}
& =n_{\mathrm{A}}\left\{\mu_{\mathrm{A}}^{\circ}+R T \ln \left(P / P_{0}\right)+R T \ln \chi_{\mathrm{A}}\right\} \\
& =n_{\mathrm{A}} \mu_{\mathrm{A}}(\text { pure })+n_{\mathrm{A}} R T \ln \chi_{\mathrm{A}} \\
G_{2} & =G_{\mathrm{A}}+G_{\mathrm{B}}<G_{1}
\end{aligned}
$$

Change:

$$
\begin{aligned}
\Delta G_{\text {mix }} & =G_{2}-G_{1} \\
& =n_{\mathrm{A}} R T \ln \chi_{\mathrm{A}}+n_{\mathrm{B}} R T \ln \chi_{\mathrm{B}} \\
& =n R T\left(\chi_{\mathrm{A}} \ln \chi_{\mathrm{A}}+\chi_{\mathrm{B}} \ln \chi_{\mathrm{B}}\right)
\end{aligned}
$$

$$
\Delta G_{\text {mix }}=n R T\left(\chi_{\mathrm{A}} \ln \chi_{\mathrm{A}}+\chi_{\mathrm{B}} \ln \chi_{\mathrm{B}}\right)
$$

$\Delta G_{\text {mix }}<0 \quad$ Mixing is spontaneous.

Entropy of Mixing $\quad \Delta S_{\text {mix }}=-\left(\partial \Delta G_{\text {mix }} / \partial T\right)_{P, n_{i}}=-n R \sum \chi_{i} \ln \chi_{i}$
Enthalpy of Mixing $\quad \Delta H_{\text {mix }}=\Delta G_{\text {mix }}+T \Delta S_{\text {mix }}=0$
Similarly, $\Delta U_{\text {mix }}=\Delta V_{\text {mix }}=0$ for ideal gases and solutions

Free Energy of Mixing 2

For a binary system, $\Delta G_{\text {mix }}$ is at its minimum and $\Delta S_{\text {mix }}$ at its maximum when $\chi_{\mathrm{A}}=\chi_{\mathrm{B}}=0.5$

Equilibrium and Mixing:
Consider an equilibrium between two ideal gases $\mathrm{A} \rightleftharpoons \mathrm{B}$

$$
\begin{aligned}
G & =G_{\mathrm{A}}(\text { pure })+G_{\mathrm{B}}(\text { pure })+\Delta G_{\text {mix }} \\
& =n\left(\chi_{\mathrm{A}} \mu_{\mathrm{A}}+\chi_{\mathrm{B}} \mu_{\mathrm{B}}\right)+n R T\left(\chi_{\mathrm{A}} \ln \chi_{\mathrm{A}}+\chi_{\mathrm{B}} \ln \chi_{\mathrm{B}}\right)
\end{aligned}
$$

The equilibrium composition is determined by the minimum in $G_{\text {total }}$.

$$
\text { A }-\cdots-\quad-\quad \text { composition- }-\cdots B
$$

Reaction Equilibrium 1

Consider $\quad \mathrm{A} \rightleftharpoons \mathrm{B}$
Suppose an amount $d x$ of A turns into B .
Then $(d G)_{T, P}=\mu_{\mathrm{A}} d n_{\mathrm{A}}+\mu_{\mathrm{B}} d n_{\mathrm{B}}=-\mu_{\mathrm{A}} d x+\mu_{\mathrm{B}} d x$

$$
\Rightarrow \quad\left(\frac{\partial G}{\partial x}\right)_{T, P}=\mu_{\mathrm{B}}-\mu_{\mathrm{A}}
$$

μ_{A} and μ_{B} depend on composition, and therefore change during the reaction.
If $\mu_{A}>\mu_{B}$ the reaction proceeds from $\mathrm{A} \rightarrow \mathrm{B}$.
If $\mu_{\mathrm{A}}<\mu_{\mathrm{B}}$ the reaction proceeds from $\mathrm{B} \rightarrow \mathrm{A}$.

At equilibrium

$$
\mu_{\mathrm{A}}=\mu_{\mathrm{B}}
$$

$$
\begin{gathered}
\mu_{\mathrm{A}}^{\circ}+R T \ln \left(p_{\mathrm{A}}^{\mathrm{eq}} / P^{\circ}\right)=\mu_{\mathrm{B}}^{\circ}+R T \ln \left(p_{\mathrm{B}}^{\mathrm{eq}} / P^{\circ}\right) \\
R T \ln \left(p_{\mathrm{A}}^{\mathrm{eq}} / p_{\mathrm{B}}^{\mathrm{eq}}\right)=\mu_{\mathrm{B}}^{\circ}-\mu_{\mathrm{A}}^{\circ}=\Delta \bar{G}_{\mathrm{rxn}}^{\circ} \\
\frac{p_{\mathrm{B}}^{\mathrm{eq}}}{p_{\mathrm{A}}^{\mathrm{eq}}}=\exp \left(-\Delta \bar{G}_{\mathrm{rxn}}^{\circ} / R T\right)
\end{gathered}
$$

Reaction Equilibrium 2

A reaction such as $2 A+3 B \rightarrow C+2 D$ can be written as

$$
0=-2 A-3 B+C+2 D
$$

or completely generally as $0=\sum_{i} v_{i} \mathrm{R}_{i}=0$
Then $\quad\left(\frac{\partial G}{\partial \xi}\right)_{T, P}=\sum_{i} v_{i} \mu_{i}$
and at equilibrium, $\quad \sum_{i} v_{i} \mu_{i}=0$

$$
\begin{gathered}
\sum_{i}\left(v_{i} \mu_{i}^{\circ}+v_{i} R T \ln \frac{p_{\mathrm{i}}^{\mathrm{eq}}}{P^{\circ}}\right)=0 \\
\Delta \bar{G}_{\mathrm{rxn}}^{\circ}+R T \ln \left[\prod_{i}\left(\frac{p_{i}}{P^{\circ}}\right)_{\mathrm{eq}}^{\mathrm{v}_{i}}\right]=0 \\
\Delta \bar{G}_{\mathrm{rxn}}^{\circ}=-R T \ln K \\
K=\prod_{i}\left(\frac{p_{i}}{P^{\circ}}\right)_{\mathrm{eq}}^{v_{i}}
\end{gathered}
$$

