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Equilibrium Constants
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Thermodynamic Equilibrium Constant

Some books still refer to the pressure equilibrium constant

which in general has 
pressure units

The equilibrium constant can also be expressed 
in mole fractions:

/i i ip n RT V c RT= =

eq eq

i i
c

i i

i ip c RT c RTK K
P P P

ν ν ∑ν    = = =          
∏ ∏

!
!

! ! !

and in concentrations:
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Equilibrium Calculations

2 NO      +      Cl2 → 2NOCl
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The value of a at equilibrium (and thus the equilibrium 
composition of the reaction mixture) depends on pressure.
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Temperature Dependence of KP
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Integrating,

Exothermic reactions: ∆H < 0 so K falls with increasing T.
Endothermic reactions: ∆H > 0 so K rises with increasing T.
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Pressure Dependence of Equilibrium
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Although the thermodynamic equilibrium constant does not 
depend on pressure, the K for mole fraction does if 0∆ν ≠

The equilibrium composition depends on pressure if 0∆ν ≠

Le Chatelier’s Principle
A system at equilibrium, when subjected to a perturbation, 
responds in a way that tends to minimize the effect.
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Equilibria Involving Condensed Matter

3 2CaCO (s) CaO(s) CO (g)+"e.g.
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K depends only on the partial pressures of the gaseous 
reaction components.
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A special case is the evaporation of a liquid: L(l) G(g)"
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Phase Equilibria

Consider a closed system of a single component.  
The chemical potential determines which phase is stable at 
a particular T and P.  µ tends to a minimum.
At the melting point  Tm,   µ(s) = µ(l)
At the boiling point  Tb. µ(l) = µ(g)
These points depend on temperature and pressure.
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The Clapeyron Equation

Consider two phases α and β in equilibrium:

If small changes in T and P are made such that α and β are 
still in equilibrium:

Melting

Integrating,

⇒ Tm increases with pressure not for water!
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The Clausius-Clapeyron Equation

vap vap
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Integrating,

The normal boiling point is the temperature at which the 
vapour pressure becomes standard, i.e. 1 bar.

Sublimation solid  ↔ gas
The liquid is not stable at any temperature.

Triple Point: solid, liquid and gas are all in equilibrium
This happens at the pressure where the sublimation 
temperature and the boiling temperature coincide.
At the triple point,

vapour pressure of liquid = vapour pressure of solid
Ttriple and Ptriple are fixed.
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The Phase Rule
How many intensive variables are needed to describe fully 
a system of C components and P phases?

( ) ( )phase 1 phase 2µ = µ =…
but since the phases are in equilibrium, 

(P – 1)C variables are redundant

∴ Number of independent 
concentration variables

∴ Total number of variables 
(degrees of freedom)

Phase: A state of matter that is uniform throughout, 
in both chemical composition and physical state.

Component: The number of components is the 
minimum number of independent species necessary 
to define the composition of all phases in the system.

! Two for temperature and pressure.
! How many for the composition of each phase?
Take mole fractions of each component in each phase

( )1P C⇒ × − C-1 because for each phase 1iχ =∑

( ) ( )1 1P C P C C P= − − − = −

2F C P= − +

Reactions and phase equilibria must be taken into account.
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Phase Diagrams of Pure Materials
2   h 1 3witF C P C F P⇒= − + = = −

For single phase regions there are 2 degrees of freedom.

For phase boundaries there is 1 degree of freedom.

At the triple point there is no freedom.
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The Phase Diagram of Water
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There are other solid phases at much higher pressures.




