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What is the structure of 
the transition state?

How is this energy 
distributed amongst the 
reaction products?

How is energy 
supplied to 
overcome this 
barrier?

What is wrong 
with this diagram?



3/10/2005CHEM 360 Spring 2004Paul Percival

Collision Theory 1
In the simple hard sphere model of molecular collisions, 
the impact parameter (distance of closest approach) is 
the sum of the radii of the collision pair.

rA rBd = rA+rB

Collision cross-section 2dσ = π
area σ

collision volume 
swept by A per sec.

Collision frequency AB A B relZ N N v= σ

collision frequency per A molecule
number of collisions 
per unit time
per unit volume = (m-3)  (m-3)  (m2)  (m s-1) ⇒ m-3 s-1
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Collision Theory 2

Activation Energy:  Only a fraction of collisions have 
sufficient kinetic energy to overcome the activation barrier.
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Collision Theory 3

1. Orientation Dependence
The reactions of polyatomic molecules typically depend 
on their mutual orientation.  

Solution:  Replace σ with σ*, the reactive cross-section:

Basic collision theory has several deficiencies, which can be 
partially overcome by making more sophisticated models.

* Pσ = σ
steric factor

2. Intermolecular Interactions 
Molecules are not incompressible hard spheres!
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Hard sphere Square well Lennard-Jones

3. The collision energy depends on the impact 
parameter, which is angular dependent.

4. There is no way to predict the activation energy.



Collisions in Gases
The effective volume of a hard sphere is 4 x the sphere volume!

d=2r3 3161 4
2 3 3N d N r= ⋅ π = ⋅ π

32
Av3 RTd P b d N

V b
= = π

−
can be estimated from the van der Waals coefficient :

The pressure is greater in a hard-sphere gas than an ideal gas. 
Without attractive forces there is no gas-liquid condensation.   

2 /d V Nπ λ = 2 
1   

d N
λ =⇒

π
the  mean free path (approx. only)

This treatment ignores collisions between particles moving in different directions.  
The “average” collision is at right angles, so the mean free path is reduced by √2.
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The ‘space’ occupied by each molecule 
is:

Relative velocity:

coll / vτ = λ
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For molecule 1  moving among 2

The collision rate

Total collision rate between particles 1 and 2

Divide by 2 to get the excluded volume

The mean time 
between collisions



Intermolecular Potentials
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extra term for interaction of two dipoles



Internal Coordinates and Reduced Mass
If the potential energy of a system depends only on the internal coordinates of the system, 
then the motion of the centre of mass can always be separated from the internal motion.

Consider two point masses m1 and m2, both in motion and interacting with each other.

Define centre of mass coordinates:

and internal coordinates:

then
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For bimolecular collisions the kinetic energy in internal coordinates is 21
rel2 vµ

where the relative velocity rel 1 2v v v= − vector quantities



Distribution of Molecular Speeds

Boltzmann Distribution of Energies:
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Probability density for molecular speeds

by integrating over the angles of spherical polar coordinates
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vx
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f (v)

for maximum of f (v)



Structure in Liquids
Liquid densities are similar to those of solids.  Intermolecular distance are typically 
a few times molecular diameters.

Crystals have ‘regular’ and extended structures.  
Liquids may have local structure – ‘shells’ of neighbours.

N.N.(liquid) density(liquid) 10
N.N.(solid) density(solid) 12

≈ ⇒
∼The number of next nearest 

neighbours can be estimated.

probability of finding molecule 2 at  from 1
probability of finding molecule 2 far from 1

r
=

A statistical representation is given by the radial distribution function = pair correlation function
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0

solid

liquid

There are voids because of disorder in the shells.

g(r) is determined experimentally by 
neutron (l) or X-ray (s) scattering; 
and simulated numerically by:

Monte Carlo method:  102-104 molecules in random positions; average properties 
calculated for many configurations.

Molecular Dynamics:  molecules initially random but new positions calculated every fs from 
classical equations of motion.

Both methods use periodic boundary conditions.



Collisions in Liquids
“Intermolecular forces do not depend on velocities, so the 
velocity distribution is valid for a liquid as well as a gas.”
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However, there is ambiguity in the definition of a collision in a liquid  
there is no unique instant of contact
there is no mean free path.

The collision rate (inverse collision time) can be estimated:
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the time to travel from the minimum of the

L - J potential to a value of such that

from a ‘known’ potential.

from molecular properties, e.g.
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by scaling the gas collision frequency 
with the diffusion constant
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D
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The ‘residence time’ for a molecule in a solvent cage is typically 100-1000 times longer 
than the time between collisions for a liquid of “normal” density.

ρ = density, η viscosity



Collisions per Encounter
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calculated for Mu + hydroquinone

time

many collisions per encounter at low temperature

collision ≡ encounter for gas-like behaviour at high T
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