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Diffusion-limited Kinetics

Apply the steady-state approximation to {AB}:
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Intermediate situations can be described by:
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Take the inverse:
eff D act

1 1 1
k k k

= +

The effective rate constant has two limits:
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Slow diffusion :

Fast diffusion :
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For fast reactions in liquids, the rate-determining step can 
be diffusion of the reactants to form the encounter pair:
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Diffusion-limited Rate Constants
The diffusion –limited rate constant can be calculated:
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DA, DB can be estimated from the

Stokes-Einstein equation B
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Assuming the hydrodynamic radius ≈ reaction radius,
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For reactants of similar size,
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The rate constant is determined by solvent properties!
The viscosity dominates the temperature dependence.



What if the Diffusion is not at Equilibrium?
This can happen when a reactant suddenly ‘appears’ in a homogeneous 
solution of its reaction partner.
e.g. photogeneration of a transient species, 
or stopping a particle (muon, positron, ...) from a beam.
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At short times the reaction rate 
is enhanced by ‘contact’ pairs.
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In general, the rate “constant” 
is time dependent:



Diffusion-Reaction Kinetics
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For fast reactions in liquids the rate-determining step can be diffusion 
of the reactants to form the encounter pair.  
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The reaction efficiency depends on the number of collisions of the reactant 
molecules per encounter.

slow diffusion limit

fast diffusion limit, “reaction controlled”

pR = orientation factor
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Note that depends on pressure, 
i.e.  it corresponds to the low pressure rate constant.
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Non-Arrhenius Temperature Dependence

Rate Constants for Reaction of the Hydrated Electron in Water
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Example: Reaction of the Hydroxyl Radical with Hydroperoxyl

Elliot et al., 
AECL Report 11073 (1994)
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·OH + H2 → H2O + H

Fig. 2. Arrhenius plot for reaction (1). The solid line represents

an extrapolation of previously reported data available up to

230 �C [6,7].

Marin, Jonah and Bartels, Chem. Phys. Lett. (2003)



H + OH  → H2O
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H abstraction from methanol by Mu (H)
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Spin Effects in Diffusion-Controlled Reactions

( )( )diff A B A B4k R R D D+σ= π +

For reactions between pairs of radicals (or other paramagnetic species)

The spin factor accounts for spin pairing in chemical bonds.

Thus, H + H → H2 has σ = 0.25 because the singlet spin combination reacts, 

but not the triplet (three-fold degenerate) S = 1 state.

Some radical-radical reactions have higher σ because of spin coversion, 

either through fast spin relaxation (·OH) or mixing of spin levels.

CIDNP
CIDEP
magnetic field dependent rates
field dependent fluorescence 
quenching

Selective mixing of spin levels gives rise to:

re-encounters enhance mixing
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Diffusion-Controlled Reactions between Ions
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For reactions between pairs of ions the diffusion-limited rate constant is

The Onsager escape radius is the separation at 
which the electrostatic attraction is balanced 
by thermal motion (opposite charges)
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Proton Diffusion
The Onsager correction is insufficient to explain the high rates of 
many proton reactions, e.g.
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Grotthuss Mechanism
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Reff is about 8 Å, consistent with the existence of species such as [H9O4]+

This is even more efficient in ice, with its regular H-bonded structure.
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