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Can the system 
tunnel through the 
potential barrier?

What is the probability that the system will move from reactants to products? 
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What is the structure of 
the transition state?

How is this energy 
distributed amongst the 
reaction products?

How is energy 
supplied to 
overcome this 
barrier?

What is wrong 
with this diagram?



1-D Reaction Coordinate

The simplest reaction “surface” has 1 dimension, such as the interatomic 
distance in the dissociation of a diatomic. e.g. AB  → A + B

The potential energy V is the internal energy U from thermodynamics.  

In the Born-Oppenheimer Approximation the nuclear and electronic 
parameters are separable: product of wavefunctions, sum of energies. 

The potential energy surface then corresponds to a plot of the energy of 
the system as a function of nuclear coordinates. 

For r ≈ re the potential can be modelled 
by the simple harmonic oscillator.
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But extreme anharmonicity is 
needed to model dissociation: 

The Morse Potential
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2-D Potential Energy Surface 

rA-B

A + BCAB + C

E

or a contour plot:

rB-C

rA-B

symmetric 
vibration of 
A-B-C

minimum energy path

A collinear triatomic 
reaction such as 

A + BC → AB + C

needs a 3-D plot:



Views of a Potential Energy Surface

0.60

0.90

1.20

1.50

1.80

2.10

2.40

2.70

3.00

0.60 
0.90 

1.20 
1.50 

1.80 
2.10 

2.40 
2.70 

3.00 

r (B-C)

r (A-B)

0.60

0.90

1.20

1.50

1.80

2.10

2.40

2.70

3.00
0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00 

r (B-C)

r (A-B)

0.600.901.201.501.802.102.402.703.00

0.60 0.90 1.20 1.50 1.80 2.10 2.40 2.70 3.00 
r (B-C)r (A-B)



Determination of PE Surfaces
A reaction PE surface can be built up from a grid of individual points calculated 
for different atomic positions (geometry optimized for other dimensions). 

Standard semi-empirical (MNDO, AM1. PM3,…) and ab initio packages can be 
used (Gaussian, Gamess, …) but parameters and basis sets are usually 
optimized for structures close to equilibrium. Spin correlation effects can be 
very important when bonds are broken/formed, so density functional methods 
are preferred over Hartree-Fock.

PE surfaces can also be derived from experimental spectroscopic data.

e.g. The RKR method is based on extrapolation of a vibrational series to the 
dissociation limit. Rydberg-Klein-Rees
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The LEPS Surface
An analytic function is often more practical than a table of points − it is 
continuous and can have adjustable parameters.

London-Eyring-Polanyi-Sato (LEPS) surface
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Q, J and S are derived from the 
Coulomb, exchange and overlap 
integrals of the Heitler-London 
valence-bond theory

Morse function

anti-Morse function



The BEBO Method
BEBO = Bond-Energy-Bond-Order Johnston and Parr
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It is completely empirical and mostly used for 1-D reaction paths (estimation 
of activation energies).
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the bond-order is conserved

For A + BC → AB + C



Miscellaneous Reaction Surfaces
H + F2 → HF + F
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H + HF → H2 + F

late barrier

H + FH → HF + H



Skewed Coordinate System
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PE surfaces can be used for classical trajectory calculations as long as the 
effective mass of the reacting system (modelled by rolling ball) is constant. 

A mass-weighted coordinate system 
diagonalizes the kinetic energy of 
the system.
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Tunnelling
Consider a particle 
of energy E striking 
a potential barrier 
of height V.
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Application of boundary conditions 
gives the transmission probability:

the mass of the particle
its energy (compared to the barrier)
the width of the barrier

Tunnelling depends on:
G(E)
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Tunnelling in Chemical Reactions
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The transmission coefficient  κ  is the correction factor

The transmission probability  G  or permeability depends on energy.
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The PE curve is often approximated by a standard 
function to get an analytic solution.

e.g the Eckart barrier gives
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‡ imaginary frequency 
of reaction coordinate


