Autocatalysis

$$
\mathrm{A}+\mathrm{P} \xrightarrow{k} 2 \mathrm{P}
$$

$$
\text { rate }=-\frac{d a}{d t}=\frac{d x}{d t} \quad[\mathrm{~A}]=a_{0}-x, \quad[\mathrm{P}]=p_{0}+x
$$

$$
\frac{d x}{d t}=k\left(a_{0}-x\right)\left(p_{0}+x\right)
$$

$$
k t=\frac{1}{\left(a_{0}+p_{0}\right)} \ln \left\{\frac{a_{0}}{\left(a_{0}-x\right)} \frac{\left(p_{0}+x\right)}{p_{0}}\right\}
$$

$$
\begin{aligned}
k t & =\int_{0}^{x}\left\{\frac{d x}{\left(a_{0}-x\right)\left(p_{0}+x\right)}\right\} \\
& =\frac{1}{\left(a_{0}+p_{0}\right)} \int_{0}^{x}\left\{\frac{1}{\left(a_{0}-x\right)}+\frac{1}{\left(p_{0}+x\right)}\right\} d x \\
& =\frac{1}{\left(a_{0}+p_{0}\right)}\left[-\ln \left(a_{0}-x\right)+\ln \left(p_{0}+x\right)\right]_{0}^{x}
\end{aligned}
$$

Substitute $\alpha=\left(a_{0}+p_{0}\right) k, \quad \beta=p_{0} / a_{0}$

$$
\begin{aligned}
& \alpha t=\ln \frac{\left(1+x / p_{0}\right)}{\left(1-\beta x / p_{0}\right)} \\
& x / p_{0}=\frac{\mathrm{e}^{\alpha t}-1}{1+\beta \mathrm{e}^{\alpha t}}
\end{aligned}
$$

The Simplest Oscillating Reaction Model

The Lotka-Volterra Mechanism

$$
\begin{aligned}
\mathrm{A}+\mathrm{X} & \rightarrow 2 \mathrm{X} & & \begin{array}{l}
\text { negative feedback } \\
\text { prevents runaway }
\end{array} \\
\mathrm{X}+\mathrm{Y} & \rightarrow 2 \mathrm{Y} & & \text { acceleration }
\end{aligned}
$$

[A] is held constant (replenished).
[X] and [Y] oscillate.

Two-component oscillations look like a helix in threedimensional space.

A Swinging Chemical System

Consider the Lotka-Volterra Mechanism. [X] and [Y] have a steady state at

$$
\begin{aligned}
\mathrm{A}+\mathrm{X} & \rightarrow 2 \mathrm{X} & \frac{d x}{d t}=k_{1} a_{0} x-k_{2} x y \\
\mathrm{X}+\mathrm{Y} & \rightarrow 2 \mathrm{Y} & \frac{d y}{d t}=k_{2} x y-k_{3} y
\end{aligned}
$$

$$
\begin{gathered}
k_{1} a_{0} x_{\mathrm{ss}}-k_{2} x_{\mathrm{ss}} y_{\mathrm{ss}}=0 \\
k_{2} x_{\mathrm{ss}} y_{\mathrm{ss}}-k_{3} y_{\mathrm{ss}}=0
\end{gathered} \Rightarrow \begin{aligned}
& y_{\mathrm{ss}}=a_{0} k_{1} / k_{2} \\
& x_{\mathrm{ss}}=k_{3} / k_{2}
\end{aligned}
$$

Make a small displacement from the S-S: $\left(x_{\mathrm{ss}}, y_{\mathrm{ss}}\right)$ to $\left(x_{\mathrm{ss}}+s, y_{\mathrm{ss}}+z\right)$ where $s, z \ll x_{\mathrm{ss}}, y_{\mathrm{ss}}$

$$
\begin{aligned}
& \frac{d x}{d t}=k_{1} a_{0}\left(x_{\mathrm{ss}}+s\right)-k_{2}\left(x_{\mathrm{ss}}+s\right)\left(y_{\mathrm{ss}}+z\right)=\left(k_{1} a_{0}-k_{2} y_{\mathrm{ss}}-k_{2} z\right)\left(x_{\mathrm{ss}}+s\right)=-k_{2} x_{\mathrm{ss}} z-k_{2} s z=\frac{d s}{d t} \\
& \frac{d y}{d t}=k_{2}\left(x_{\mathrm{ss}}+s\right)\left(y_{\mathrm{ss}}+z\right)-k_{3}\left(y_{\mathrm{ss}}+z\right)=\left(k_{2} x_{\mathrm{ss}}+k_{2} s-k_{3}\right)\left(y_{\mathrm{ss}}+z\right)=k_{2} y_{\mathrm{ss}} s+k_{2} s z=\frac{d z}{d t} \\
& \left.\begin{array}{l}
\frac{d s}{d t}=-k_{2} x_{\mathrm{ss}} z-k_{2} s z \approx-k_{2} x_{\mathrm{ss}} z \\
\frac{d z}{2}=k_{2} y_{\mathrm{ss}} s+k_{2} s z \approx k_{2} y_{\mathrm{ss}} s
\end{array}\right\} \frac{d^{2} s}{d t^{2}}=-k_{2} x_{\mathrm{ss}} \frac{d z}{d t}=-k_{2}^{2} x_{\mathrm{ss}} y_{\mathrm{ss}} s=-a_{0} k_{1} k_{3} s
\end{aligned}
$$

\Rightarrow An oscillation: $\quad s(t)=A e^{i \omega t}+B e^{-i \omega t}, \quad \omega=\left(a_{0} k_{1} k_{3}\right)^{1 / 2}$

$$
\begin{aligned}
\mathrm{e}^{i \omega t} & =\cos (\omega t)+i \sin (\omega t) \\
\mathrm{e}^{-i \omega t} & =\cos (\omega t)-i \sin (\omega t)
\end{aligned}
$$

Other Simple Oscillating Reaction Models

Brusselator

$$
\mathrm{A} \rightarrow \mathrm{X}
$$

Prigogine et al

$$
\begin{aligned}
2 \mathrm{X}+\mathrm{Y} & \rightarrow 3 \mathrm{X} \\
\mathrm{~B}+\mathrm{X} & \rightarrow \mathrm{Y}+\mathrm{C} \\
\mathrm{X} & \rightarrow \mathrm{D}
\end{aligned}
$$

[A] and [B] are held constant.
[X] and [Y] settle down to a limit cycle:

Oregonator
Noyes et al

$$
\begin{aligned}
\mathrm{A}+\mathrm{Y} & \rightarrow \mathrm{X} \\
\mathrm{X}+\mathrm{Y} & \rightarrow \mathrm{C} \\
\mathrm{~B}+\mathrm{X} & \rightarrow 2 \mathrm{X}+\mathrm{Z} \\
2 \mathrm{X} & \rightarrow \mathrm{D} \\
\mathrm{Z} & \rightarrow \mathrm{Y}
\end{aligned}
$$

The $\mathrm{B}-\mathrm{Z}$ reaction is of this general
form, with $\quad \mathrm{X}=\mathrm{HBrO}_{2}$

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{Br}^{-} \\
& \mathrm{Z}=2 \mathrm{Ce}^{4+}
\end{aligned}
$$

but many steps and species.

Belousov Zhabotinskii Reaction - Schematic

Cerium catalyzed oxidation of malonic acid by bromate in sulphuric acid
Belousov, 1959
Spatial periodic variations of intermediate concentrations
Zhabotinskii, 1967
X is in steady-state but Y is consumed until [Y] falls below a critical value where
X now reacts mostly with B.

$$
\begin{aligned}
& \mathrm{A}+\mathrm{Y} \rightarrow \mathrm{X} \\
& \mathrm{X}+\mathrm{Y} \rightarrow \mathrm{P} \\
& \hline \mathrm{~A}+2 \mathrm{Y} \rightarrow \mathrm{P}
\end{aligned}
$$

Mechanism II

$$
\begin{gathered}
2 \mathrm{~B}+2 \mathrm{X} \rightarrow 4 \mathrm{X}+2 \mathrm{Z} \\
2 \mathrm{X} \rightarrow \mathrm{Q} \\
2 \mathrm{Z} \rightarrow 2 \mathrm{Y} \\
\hline 2 \mathrm{~B} \rightarrow \mathrm{Q}+2 \mathrm{Y}
\end{gathered}
$$

[X] rises until its production is balanced by its second-oder decay to Q, reaching a new steady-state of X. The production of Z leads to more Y and mechanism I takes over again.

Belousov Zhabotinskii Reaction - Chemistry

$$
\begin{aligned}
& \mathrm{BrO}_{3}^{-}+\mathrm{Br}^{-}+2 \mathrm{H}^{+} \rightarrow \mathrm{HBrO}_{2}+\mathrm{HOBr} \\
& \mathrm{HBrO}_{2}+\mathrm{Br}^{-}+\mathrm{H}^{+} \rightarrow 2 \mathrm{HOBr} \\
&\left(\mathrm{HOBr}+\mathrm{Br}^{-}+\mathrm{H}^{+}\right.\left.\rightarrow \mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}\right) \times 3 \\
&\left(\mathrm{Br}_{2}+\mathrm{CH}_{2}(\mathrm{COOH})_{2}\right.\left.\rightarrow \mathrm{CHBr}(\mathrm{COOH})_{2}+\mathrm{Br}^{-}+\mathrm{H}^{+}\right) \times 3 \\
& \hline \mathrm{BrO}_{3}^{-}+4 \mathrm{Ce}^{3+}+\mathrm{CH}_{2}(\mathrm{COOH})_{2}+5 \mathrm{H}^{+} \rightarrow \mathrm{CHBr}(\mathrm{COOH})_{2}+4 \mathrm{Ce}^{4+}+3 \mathrm{H}_{2} \mathrm{O} \\
& \hline\left(\mathrm{BrO}_{3}^{-}+\mathrm{HBrO}_{2}+\mathrm{H}^{+}\right.\left.\rightarrow 2 \mathrm{BrO}_{2}+\mathrm{H}_{2} \mathrm{O}\right) \times 2 \\
&\left(\mathrm{BrO}_{2}+\mathrm{Ce}^{3+}+\mathrm{H}^{+}\right.\left.\rightarrow \mathrm{HBrO}_{2}+\mathrm{Ce}^{4+}\right) \times 4 \\
& 2 \mathrm{HBrO}_{2} \rightarrow \mathrm{BrO}_{3}^{-}+\mathrm{HOBr}+\mathrm{H}^{+} \\
& \hline \mathrm{HOBr}^{+} \mathrm{CH}_{2}(\mathrm{COOH})_{2} \rightarrow{\mathrm{CHBr}(\mathrm{COOH})_{2}+\mathrm{H}_{2} \mathrm{O}}^{\mathrm{BrO}_{3}^{-}+2 \mathrm{Br}^{-}+3 \mathrm{CH}_{2}(\mathrm{COOH})_{2}+3 \mathrm{H}^{+} \rightarrow 3 \mathrm{CHBr}(\mathrm{COOH})_{2}+3 \mathrm{H}_{2} \mathrm{O}} \\
& \hline 4 \mathrm{Ce}^{4+}+\mathrm{CHBr}_{2}(\mathrm{COOH})_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Ce}^{3+}+\mathrm{Br}^{-}+\mathrm{HCOOH}+2 \mathrm{CO}_{2}+5 \mathrm{H}^{+} \\
& 6 \mathrm{Ce}^{4+}+\mathrm{CH}_{2}(\mathrm{COOH})_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{Ce}^{3+}+\mathrm{HCOOH}+2 \mathrm{CO}+2 \mathrm{H}^{+}
\end{aligned}
$$

$$
3 \mathrm{BrO}_{3}^{-}+5 \mathrm{CH}_{2}(\mathrm{COOH})_{2}+3 \mathrm{H}^{+} \rightarrow 3 \mathrm{CHBr}(\mathrm{COOH})_{2}+2 \mathrm{HCOOH}+4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

Nonlinearity and Feedback

rate vs advancement

First-order kinetics are linear; all others are nonlinear.

$$
\xi=\frac{[\mathrm{X}]_{0}-[\mathrm{X}]}{[\mathrm{X}]_{0}}
$$

The maximum rate occurs at $t=0$.
Feedback occurs when the products inflence the rate.

$$
\begin{aligned}
\mathrm{A}+\mathrm{X} & \rightarrow 2 \mathrm{X} \\
\mathrm{~A}+2 \mathrm{X} & \rightarrow 3 \mathrm{X}
\end{aligned}
$$

The NO + CO Reaction

$$
\begin{aligned}
\mathrm{CO}+* & \rightleftharpoons \mathrm{CO}_{\mathrm{ad}} \\
\mathrm{NO}+* & \rightleftharpoons \mathrm{NO}_{\mathrm{ad}} \\
\mathrm{NO}_{\mathrm{ad}}+* & \rightarrow \mathrm{~N}_{\mathrm{ad}}+\mathrm{O}_{\mathrm{ad}} \\
2 \mathrm{~N}_{\mathrm{ad}} & \rightarrow \mathrm{~N}_{2}+2^{*} \\
\mathrm{CO}_{\mathrm{ad}}+\mathrm{O}_{\mathrm{ad}} & \rightarrow \mathrm{CO}_{2}+2 *
\end{aligned}
$$

Dissociation of NO is slow and requires an extra vacant site (*). The elimination of gaseous N_{2} and CO_{2} from the surface is autocatalytic since the extra vacant sites accelerate the dissociation of NO.

Catalytic Oxidation of Carbon Monoxide

$$
\begin{aligned}
\mathrm{CO}+* & \rightleftharpoons \mathrm{CO}_{\mathrm{ad}} \times 2 \\
\mathrm{O}_{2}+2^{*} & \rightleftharpoons 2 \mathrm{O}_{\mathrm{ad}} \\
\mathrm{CO}_{\mathrm{ad}}+\mathrm{O}_{\mathrm{ad}} & \rightarrow \mathrm{CO}_{2}+2^{*} \times 2 \\
2 \mathrm{CO}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{CO}_{2}
\end{aligned}
$$

Oscillatory behaviour occurs because there are two types of surface site, which have different sticking coefficients for O_{2} and CO.

Only CO sticks to the hex surface.

O_{2} sticks well to the square lattice.

At a critical coverage of CO , a phase transition occurs.
O consumes CO until the surface switches back to hex.

The Landolt Clock Reaction

e.g. $0.02 \mathrm{M} \mathrm{KIO}_{3}+0.02 \mathrm{M} \mathrm{NaHSO}_{3}+$ a few drops of 1% starch solution

$$
\begin{aligned}
\mathrm{IO}_{3}^{-}+3 \mathrm{HSO}_{3}^{-} & \rightarrow \mathrm{I}^{-}+3 \mathrm{HSO}_{4}^{-} & & \text {very slow } \\
\mathrm{IO}_{3}^{-}+5 \mathrm{I}^{-}+6 \mathrm{H}^{+} & \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} & & \text { fast } \\
\mathrm{I}_{2}+\mathrm{HSO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O} & \rightarrow 2 \mathrm{I}^{-}+\mathrm{HSO}_{4}^{-}+2 \mathrm{H}^{+} & & \text {very fast } \\
\mathrm{I}_{2}+\text { starch } & \rightarrow \mathrm{I}_{2}-\text { starch complex (blue) } & &
\end{aligned}
$$

The reaction is extremely slow at the start because the autocatalyst $\left[I^{-}\right]$is so small. $\left[I_{2}\right]$ is also very low until the bisulphite is used up Only then does the blue complex form.

Fronts, Targets, Spirals and Scrolls

Local initiation of a clock reaction results in a chemical wavefront.
The wave is a combined reaction-diffusion process. Such waves travel at constant velocity through the reaction mixture...
but often at speeds much faster than diffusion of the reactive species!
Reaction-diffusion processes underlie many biological signalling mechanisms.
Point source initiation of an oscillating reaction produces a series of concentric rings, i.e. a target pattern.

If the target wave pattern is broken by some asymmetry (a defect on a crystal surface), the two ends curl up to form a pair of counter-rotating spirals.

Extension of spirals into three dimensions results in scroll waves or more complicated patterns.

Scroll waves in the muscular wall of the heart can lead to fibrillation (chaotic contractions \rightarrow death.

Calcium waves on the surface of a fertilized egg are the precursor to cell division \rightarrow life!

