An Example of a Complex Mechanism

Consider the overall reaction

$$2NO + O_2 \rightarrow 2NO_2$$

It is found experimentally to be third order overall, second order in NO, first order in O_2 . It is much too fast to be a termolecular process

Test the mechanism: 21

$$2NO \xrightarrow[]{k_1}{k_2} N_2O_2$$
$$N_2O_2 + O_2 \xrightarrow[]{k_2}{k_2} 2NO_2$$

k.

Apply the steady-state approximation to $[N_2O_2]$

$$\frac{d}{dt} [N_2O_2] = k_1 [NO]^2 - k_{-1} [N_2O_2] - k_2 [N_2O_2] [O_2] = 0$$
$$[N_2O_2] = \frac{k_1 [NO]^2}{k_{-1} + k_2 [O_2]}$$
$$rate = \frac{1}{2} \frac{d}{dt} [NO_2] = k_2 [N_2O_2] [O_2] = \frac{k_1 k_2 [NO]^2 [O_2]}{k_{-1} + k_2 [O_2]}$$
$$ln the limit of \ k_{-1} >> k_2 [O_2], \qquad rate = \frac{k_1 k_2}{k_{-1}} [NO]^2 [O_2]$$

This is an example of a pre-equilibrium mechanism.

Paul Percival

Atom/Radical Combination Reactions

In low pressure gases, atoms seem to react slower than expected because the combination product falls apart in the period of a molecular vibration (~ 10⁻¹⁴ s).

 $A + B \rightarrow (A-B)^* \rightarrow A + B$

If A and B are polyatomic radicals, $(A-B)^*$ may live longer (e.g. 10^{-9} s), by distribution of D_e among different vibrational modes.

For efficient reaction a third body is needed:

1.
$$A + B \rightleftharpoons AB^*$$

2. $AB^* + M \rightarrow AB + M$
 $\rho = \frac{d[AB]}{dt} = k_2[M][AB^*]$
 $= k_2[M] \cdot \frac{k_1[A][B]}{k_{-1} + k_2[M]}$
 $= \frac{k_1k_2[M]}{k_{-1} + k_2[M]} \cdot [A][B]$
The effective rate constant depends on pressure ([M]).

Diffusion-limited Kinetics

For fast reactions in liquids, the rate-determining step can be diffusion of the reactants to form the encounter pair:

$$\mathbf{A} + \mathbf{B} \xrightarrow[]{k_{\mathrm{D}}} \{\mathbf{AB}\} \xrightarrow{k_{\mathrm{R}}} \text{products}$$

Apply the steady-state approximation to {AB}:

$$\frac{d}{dt} \left[\left\{ \mathbf{AB} \right\} \right] = k_{\mathrm{D}} \left[\mathbf{A} \right] \left[\mathbf{B} \right] - \left(k_{\mathrm{-D}} + k_{\mathrm{R}} \right) \left[\left\{ \mathbf{AB} \right\} \right] = 0$$

rate = $k_{\mathrm{R}} \left[\left\{ \mathbf{AB} \right\} \right] = \frac{k_{\mathrm{D}} k_{\mathrm{R}}}{k_{\mathrm{-D}} + k_{\mathrm{R}}} \left[\mathbf{A} \right] \left[\mathbf{B} \right]$

The effective rate constant has two limits:

Slow diffusion:
$$k_{\text{eff}} = \frac{k_{\text{D}}k_{\text{R}}}{k_{\text{-D}} + k_{\text{R}}} \rightarrow k_{\text{D}}$$
 if $k_{\text{R}} \gg k_{\text{-D}}$

Fast diffusion: $k_{\text{eff}} \rightarrow \frac{k_{\text{D}}k_{\text{R}}}{k_{\text{-D}}} = K_{\{\text{AB}\}}k_{\text{R}} = k_{\text{act}} \text{ if } k_{\text{-D}} \gg k_{\text{R}}$

Intermediate situations can be described by:

$$k_{\rm eff} = \frac{k_{\rm D}k_{\rm R}}{k_{\rm -D} + k_{\rm R}} = \frac{k_{\rm D}(k_{\rm D}k_{\rm R} / k_{\rm -D})}{k_{\rm D} + (k_{\rm D}k_{\rm R} / k_{\rm -D})} = \frac{k_{\rm D}k_{\rm act}}{k_{\rm D} + k_{\rm act}}$$

Take the inverse:

 $\frac{1}{k_{\rm eff}} = \frac{1}{k_{\rm D}} + \frac{1}{k_{\rm act}}$

Enzyme Kinetics 1

Another example of a pre-equilibrium mechanism is one used to model the kinetics of enzyme action:

Applying the steady-state approximation to the bound state,

$$\frac{d[ES]}{dt} = k_1[E][S] - k_{-1}[ES] - k_2[ES] = 0$$

$$[ES] = \frac{k_1}{k_{-1} + k_2}[E][S] = \frac{k_1}{k_{-1} + k_2}([E]_0 - [ES])[S]$$

Rearranging:
$$[ES] = \frac{k_1[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$$

Rate: $\rho = \frac{d[P]}{dt} = k_2[ES] = \frac{k_1k_2[E]_0[S]}{k_{-1} + k_2 + k_1[S]}$
 $\rho = \frac{k_2[E]_0[S]}{K_M + [S]}$ with $K_M = \frac{k_{-1} + k_2}{k_1}$
Michaelis-Menten Michaelis constant

Chain Reactions

 $\begin{array}{ll} A \rightarrow R_{1} & \text{initiation} \\ R_{1} + B \rightarrow R_{2} + P_{1} \\ R_{2} + C \rightarrow R_{1} + P_{2} \end{array} \end{array} \hspace{0.2cm} \text{propagation} \\ 2R_{1} \rightarrow P_{3} & \text{termination} \end{array}$

R is often, but not always, a free radical.

Initiation may be thermal, photochemical, radiolysis, ... The overall reaction is determined by adding the propagation steps:

$$\mathbf{B} + \mathbf{C} \rightarrow \mathbf{P}_1 + \mathbf{P}_2$$

Important examples include polymerization, combustion, photochemical smog production and the depletion of stratospheric ozone by CFCs.

$$CF_2Cl_2 \xrightarrow{hv} \cdot CF_2Cl + Cl \cdot Cl \cdot + O_3 \longrightarrow ClO \cdot + O_2$$
$$ClO \cdot + O \cdot \longrightarrow Cl \cdot + O_2$$

The net effect is catalysis by the CFC of the reaction

$$O \cdot + O_3 \rightarrow 2O_2$$

Rice-Herzfeld Mechanism

e.g. for the thermal decomposition of acetaldehyde $CH_{3}CHO \rightarrow \cdot CH_{3} + \cdot CHO$ initiation 1 $\cdot CHO \rightarrow \cdot H + CO$ 2 $\cdot H + CH_3CHO \rightarrow H_2 + CH_3CO$ 3 $\cdot CH_3 + CH_3CHO \rightarrow CH_4 + CH_3\dot{C}O$ > propagation 4 $CH_3\dot{C}O \rightarrow CH_3 + CO$ 5 $2 \cdot CH_3 \rightarrow C_2H_6$ termination 6

Write steady-state equations for [CHO], [H], [CH₃], [CH₃CO]: $\frac{d}{dt}[CHO] = k_1[CH_3CHO] - k_2[CHO] = 0 \qquad [CHO] = (k_1/k_2)[CH_3CHO]$ $\frac{d}{dt}[H] = k_2[CHO] - k_3[H][CH_3CHO] = 0 \qquad [H] = (k_1/k_3)$ $\frac{d}{dt}[CH_3CO] = k_4[CH_3][CH_3CHO] + k_3[H][CH_3CHO] - k_5[CH_3CO] = 0$ $\frac{d}{dt}[CH_3] = k_1[CH_3CHO] - k_4[CH_3][CH_3CHO] + k_5[CH_3CO] - 2k_6[CH_3]^2 = 0$ $[CH_3]^2 = (k_1/k_6)[CH_3CHO]$ $rate = \frac{d}{dt}[CH_4] = k_4[CH_3][CH_3CHO] = k_4(k_1/k_6)^{1/2}[CH_3CHO]^{3/2}$

An Explosive Reaction

Overall:

 $2H_2 + O_2 \rightarrow 2H_2O$

 $H_{2} \rightarrow 2H$ $H + O_{2} \rightarrow O + OH$ $O + H_{2} \rightarrow OH + H$ $OH + H_{2} \rightarrow H_{2}O + H$ $H \rightarrow wall$ $H + O_{2} + M \rightarrow HO_{2} + M$ $HO_{2} + H_{2} \rightarrow H + H_{2}O_{2}$ $HO_{2} + H_{2}O \rightarrow OH + H_{2}O_{2}$

initiation branching propagation termination

At 700 K and 0.1 bar O₂,

each initial H atom $\rightarrow 10^{13}$ H atoms in 0.3 s.

1/30/2008

Branching Chain Reactions

 $\begin{array}{cccc} 1 & \text{Initiation} & A, B \rightarrow R_{1} \\ 2 & \text{Branching} & R_{1} + A \rightarrow R_{2} + R_{3} & [\text{R}] \text{ increases} \\ 3 & \text{Propagation} & B + R_{i} \rightarrow R_{i} + \dots \\ 4 & \text{Termination (wall)} & R_{i} \rightarrow P_{1} \\ & (\text{combination)} & 2R_{i} \rightarrow P_{2} \end{array} \right\} \quad [\text{R}] \text{ decreases}$

The steady-state approximation does not apply.

If *n* is the number of radicals at time *t*,

pressure

At pressures below 1,

> wall termination is dominant

the limit depends on surface composition and area

 the limit is altered by the size of the reaction vessel Between 1 and 2,

is the explosion peninsula

the limits change with temperature because branching reactions are *T* dependent, diffusion less so Between 2 and 3,

gas phase termination reactions are dominant
 At pressures above 3,

- reaction products are important
- \succ heat from exothermic reactions \rightarrow thermal explosion