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An Example of a Complex Mechanism
Consider the overall reaction

2NO + O2 → 2NO2

It is found experimentally to be third order overall, second 
order in NO, first order in O2.  It is much too fast to be a 
termolecular process
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Apply the steady-state approximation to [N2O2]
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This is an example of a pre-equilibrium mechanism.
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Atom/Radical Combination Reactions
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In low pressure gases, atoms 
seem to react slower than 
expected because the 
combination product falls 
apart in the period of a 
molecular vibration (~ 10-14 s).

A + B → (A-B)* → A + B

If A and B are polyatomic radicals, (A-B)* may live longer (e.g. 
10-9 s), by distribution of De among different vibrational modes.

For efficient reaction a third body is needed:
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Diffusion-limited Kinetics

Apply the steady-state approximation to {AB}:
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Intermediate situations can be described by:
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Slow diffusion :

Fast diffusion :
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For fast reactions in liquids, the rate-determining step can 
be diffusion of the reactants to form the encounter pair:



1/30/2008CHEM 360 Spring 2005Paul Percival

Enzyme Kinetics 1
Another example of a pre-equilibrium mechanism is one 
used to model the kinetics of enzyme action:
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Applying the steady-state approximation to the bound state,
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Chain Reactions
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Important examples include polymerization, 
combustion, photochemical smog production and the 
depletion of stratospheric ozone by CFCs.

R is often, but not always, a free radical.
Initiation may be thermal, photochemical, radiolysis, …
The overall reaction is determined by adding the 
propagation steps:

1 2B C P P+ → +

The net effect is catalysis by the CFC of the reaction

3 2O O 2O⋅ + →
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Rice-Herzfeld Mechanism
e.g. for the thermal decomposition of acetaldehyde
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Write steady-state equations for [CHO], [H], [CH3], [CH3CO]:
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An Explosive Reaction
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Overall:

At 700 K and 0.1 bar O2, 

each initial H atom → 1013 H atoms in 0.3 s.
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Branching Chain Reactions
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1 Initiation

2 Branching

3 Propagation

4 Termination  (wall)

[R] increases

[R] decreases
(combination)

The steady-state approximation does not apply.

If n is the number of radicals at time t,
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The exponential 
increase in n for 
φ > 0 leads to 
explosion.
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Explosion Limits

At pressures below 1,
wall termination is dominant
the limit depends on surface composition and area
the limit is altered by the size of the reaction vessel

Between 1 and 2,
is the explosion peninsula
the limits change with temperature because 
branching reactions are T dependent, diffusion less so

Between 2 and 3,
gas phase termination reactions are dominant

At pressures above 3,
reaction products are important
heat from exothermic reactions → thermal explosion
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