
Empirical Chemical Kinetics
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Reaction rates usually depend on reactant concentrations,

e.g., rate [A] [B]x yk=

rate constant

order in B

total order = x+y

In elementary reaction steps the orders are always integral,
but they may not be so in multi-step reactions.

The molecularity is the number of molecules in a reaction step.



Rate Laws

Zero order:
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Second order:
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Second-order Kinetics: Two Reactants
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or more usefully,
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Data Analysis

“Classical” methods of data analysis are often useful to explore the
order of reactions, or to display the results (e.g. A semi-log plot to
demonstrate exponential decay).

However, these methods should be avoided for quantitative data
analysis, since errors (and thus weighting) can be distorted.
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Modern data analysis uses computer for direct curve fitting,
e.g.  by chi-square minimization.
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The errors in model parameters are found by taking each in turn
and finding the variation necessary to change χ2

min to χ2
min +1.

To avoid correlation the fit must be re-optimized with all the other
adjustable parameters variable.

2A good fit has / degs. freedom 1χ =



Temperature Dependence of Complex Reactions

Assume some complex reaction
for which the overal reaction rate constant can be expressed in
terms of the elementary steps:
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The overall “activation energy” may be negative, if ni is negative
and the corrresponding Ei is large enough.



Temperature Dependence of Rate Constants

The activation energy is defined by 2
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Various theories predict an expression of the form

whence

th /
th

th
th

e

ln ln ln

m E RTk A T

Ek A m T
RT

−=

= + −

The empirical parameters are then related to theory by:
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Curvature in the Arrhenius plot is sometimes
attributed to tunnelling, but other reasons include
complex reactions, non-equilibrium kinetics, and
temperature dependence of the pre-exponential factor,
which arises naturally in most theories.

a /e ,E RTk A −=The Arrhenius expression, often expressed as

aln ln ,Ek A
RT

= - is empirical.



Theoretical  T  Dependence of Rate Constants

Simple Collision Theory A ∝  T1/2
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Bimolecular gas reaction

Liquid phase reaction
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T  Dependence of State to State Reactants

Rate constants have been determined for the reaction of OH
with different vibrational states of H2.

OH + H2 (v) → H2O + H

The Boltzmann populations for these states of H2 are
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and the thermal rate constant can be expressed as
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