An Example of a Complex Mechanism

Consider the overall reaction

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

It is found experimentally to be third order overall, second order in NO , first order in O_{2}. It is much too fast to be a termolecular process
Test the mechanism: $\quad 2 \mathrm{NO} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} \mathrm{~N}_{2} \mathrm{O}_{2}$

$$
\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{k_{2}} 2 \mathrm{NO}_{2}
$$

Apply the steady-state approximation to $\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]=k_{1}[\mathrm{NO}]^{2}-k_{-1}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]-k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]=0 \\
& \quad\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]=\frac{k_{1}[\mathrm{NO}]^{2}}{k_{-1}+k_{2}\left[\mathrm{O}_{2}\right]} \\
& \text { rate: } \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left[\mathrm{NO}_{2}\right]=k_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{2}\right]\left[\mathrm{O}_{2}\right]=\frac{k_{1} k_{2}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]}{k_{-1}+k_{2}\left[\mathrm{O}_{2}\right]}
\end{aligned}
$$

In the limit of $k_{-1} \gg k_{2}\left[\mathrm{O}_{2}\right]$,

$$
\text { rate }=\frac{k_{1} k_{2}}{k_{-1}}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

This is an example of a pre-equilibrium mechanism.

$$
A+B \rightarrow(A B)^{*} \rightarrow A+B
$$

$$
\begin{aligned}
\text { rate }=\frac{d[A B]}{d t} & =k_{2}[M]\left[A B^{*}\right] \\
& =k_{2}[M] \cdot \frac{k_{1}[A][B]}{k_{-1}+k_{2}[M]} \\
& =k_{1}[A][B]\left(\frac{k_{2}[M]}{k_{-1}+k_{2}[M]}\right)
\end{aligned}
$$

The rate in presmed-depeadent at low persons, but constant in the "highopse.... O. A."., where $[M]$ \% in crees.
applying S-S Approx to $A B^{*}$ rate.

Consecutive Reactions

Simplest case - two first-order steps

$$
\begin{array}{lc}
& \mathrm{A} \xrightarrow{k_{1}} \mathrm{~B} \xrightarrow{k_{2}} \mathrm{C} \\
\frac{\mathrm{~d} a}{\mathrm{~d} t}=-k_{1} a & a=a_{0} \mathrm{e}^{-k_{1} t} \\
\frac{\mathrm{~d} b}{\mathrm{~d} t}=k_{1} a-k_{2} b & b=a_{0} \frac{k_{1}}{k_{2}-k_{1}}\left[\mathrm{e}^{-k_{1} t}-\mathrm{e}^{-k_{2} t}\right] \\
\frac{\mathrm{d} c}{\mathrm{~d} t}=k_{2} b & c=a_{0}\left[1-\frac{k_{2}}{k_{2}-k_{1}} \mathrm{e}^{-k_{1} t}+\frac{k_{1}}{k_{2}-k_{1}} \mathrm{e}^{-k_{2} t}\right] \\
\frac{\mathrm{d} a}{\mathrm{~d} t}+\frac{\mathrm{d} b}{\mathrm{~d} t}+\frac{\mathrm{d} c}{\mathrm{~d} t}=0 & a+b+c=a_{0}
\end{array}
$$

For $k_{1} \gg k_{2}$ the reaction mechanism can be considered as two distinct steps:

1. At short times b increases as a falls. $\quad b \rightarrow a_{0} \mathrm{e}^{-k_{2} t}$
2. At longer times $\left(k_{1} t \gg 0\right), c$ increases as b falls.

The Steady-State Approximation

$$
\begin{gathered}
\mathrm{A} \xrightarrow{k_{1}} \mathrm{~B} \xrightarrow{k_{2}} \mathrm{C} \quad \text { for } k_{2} \gg k_{1} \\
\text { conc. } \\
\mathrm{d} t \\
k_{1} a-k_{2} b=k_{1} a_{0} \mathrm{e}^{-k_{1} t}\left[\frac{k_{1}}{k_{2}-k_{1}}+\frac{k_{2}}{k_{2}-k_{1}} \mathrm{e}^{-\left(k_{2}-k_{1}\right) t}\right]
\end{gathered}
$$

After the induction period, i.e. for $k_{2} t \gg 0$,

$$
\begin{aligned}
& \frac{\mathrm{d} a}{\mathrm{~d} t}=-k_{1} a_{0} \mathrm{e}^{-k_{1} t}, \quad \frac{\mathrm{~d} c}{\mathrm{~d} t} \approx k_{1} a_{0} \mathrm{e}^{-k_{1} t}, \quad \frac{\mathrm{~d} b}{\mathrm{~d} t} \approx-k_{1} a_{0} \mathrm{e}^{-k_{1} t}\left[\frac{k_{1}}{k_{2}-k_{1}}\right] \\
& \frac{\mathrm{d} b}{\mathrm{~d} t} \ll \frac{\mathrm{~d} a}{\mathrm{~d} t},\left|\frac{\mathrm{~d} c}{\mathrm{~d} t}\right|
\end{aligned}
$$

Although b is not constant...
it changes at a much smaller rate than a or c.
This is the essence of the steady-state approximation.

Numerical Integration of Differential Rate Expressions

Use second-order decay as example.
Simple integration:

$$
\begin{aligned}
& \frac{d x}{d t}=-k x^{2} \\
& \delta x=-k x^{2} \delta t \\
& x(t+\delta t)=x(t)-k x(t)^{2} \cdot \delta t
\end{aligned}
$$

Error is introduced by using a fixed value of x for the interval δt.

Runge-Kutta

e.g Take the equation $\frac{d x}{d t}=f(x)$ with initial value $x=x_{0}$

$$
\begin{aligned}
& a=f\left(x_{0}\right) \cdot \delta t \\
& b=f\left(x_{0}+\frac{1}{2} a\right) \cdot \delta t
\end{aligned}
$$

Define

$$
\left.\begin{array}{l}
c=f\left(x_{0}+\frac{1}{2} b\right) \cdot \delta t \\
d=f\left(x_{0}+c\right) \cdot \delta t
\end{array}\right\}
$$

then $x_{1}=x_{0}+\frac{1}{6}(a+2 b+2 c+d)$

More generally, for $\frac{d x}{d t}=f(t, x)$

$$
\begin{aligned}
& a=f\left(t_{0}, x_{0}\right) \cdot \delta t \\
& b=f\left(t_{0}+\frac{1}{2} \delta t, x_{0}+\frac{1}{2} a\right) \cdot \delta t \\
& c=f\left(t_{0}+\frac{1}{2} \delta t, x_{0}+\frac{1}{2} b\right) \cdot \delta t \\
& d=f\left(t_{0}+\delta t, x_{0}+c\right) \cdot \delta t
\end{aligned}
$$

