
An Example of a Complex Mechanism

Consider the overall reaction
2NO + O2  →  2NO2

Apply the steady-state approximation to [N2O2]

It is found experimentally to be third order overall,
second order in NO, first order in O2.  It is much too
fast to be a termolecular process

Test the mechanism: 1
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In the limit of  k-1 >> k2 [O2],
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This is an example of a pre-equilibrium mechanism.





Consecutive Reactions
Simplest case - two first-order steps

For k1 >> k2 the reaction mechanism can be considered
as two distinct steps:

1.  At short times b increases as a falls.

2.  At longer times (k1t >> 0), c increases as b falls.
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The Steady-State Approximation

Although  b is not constant...
it changes at a much smaller rate than a or c.

This is the essence of the steady-state approximation.
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After the induction period, i.e. for k2t >> 0,
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Numerical Integration of Differential Rate Expressions

Use second-order decay as example.
Simple integration:
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Error is introduced by using a fixed value of x for the interval δt.

Runge-Kutta
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