## Autocatalysis

$$
\mathrm{A}+\mathrm{P} \xrightarrow{k} 2 \mathrm{P}
$$

$$
\begin{aligned}
\text { rate } & =-\frac{\mathrm{d} a}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \quad[\mathrm{~A}]=a_{0}-x, \quad[\mathrm{P}]=p_{0}+x \\
\frac{\mathrm{~d} x}{\mathrm{~d} t} & =k\left(a_{0}-x\right)\left(p_{0}+x\right) \\
k t & =\int_{0}^{x}\left\{\frac{\mathrm{~d} x}{\left(a_{0}-x\right)\left(p_{0}+x\right)}\right\} \\
& =\frac{1}{\left(a_{0}+p_{0}\right)} \int_{0}^{x}\left\{\frac{1}{\left(a_{0}-x\right)}+\frac{1}{\left(p_{0}+x\right)}\right\} \mathrm{d} x \\
& =\frac{1}{\left(a_{0}+p_{0}\right)}\left[-\ln \left(a_{0}-x\right)+\ln \left(p_{0}+x\right)\right]_{0}^{x} \\
& =\frac{1}{\left(a_{0}+p_{0}\right)} \ln \left\{\frac{a_{0}}{\left(a_{0}-x\right)} \frac{\left(p_{0}+x\right)}{p_{0}}\right\}
\end{aligned}
$$

Substitute $\alpha=\left(a_{0}+p_{0}\right) k, \quad \beta=p_{0} / a_{0}$

$$
\begin{aligned}
& \alpha t=\ln \frac{\left(1+x / p_{0}\right)}{\left(1-\beta x / p_{0}\right)} \\
& x / p_{0}=\frac{\mathrm{e}^{\alpha t}-1}{1+\beta \mathrm{e}^{\alpha t}}
\end{aligned}
$$



## Oscillations in Gas Phase Kinetics

Consider the concentration profile of an intermediate in the $\mathrm{H}_{2}+\mathrm{O}_{2}$ reaction.


What if more reactant is supplied?

$t$

Examples:
Flaring of phosphorus in a loosely stoppered flask (Robert Boyle, 17th century)
Cool flames $=$ limited combustion of hydrocarbons due to "long-lived" intermediates which damp the explosion.

Pre-ignition (autoignition) producing "knock" in auto engines.

## Cool Flame Oscillations

Hydrocarbon fuels spontaneously ignite in the presence of $\mathrm{O}_{2}$ at $T>400-500 \mathrm{~K}$.
"True" ignition gives $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $T$ increases $\sim 1000 \mathrm{~K}$.
"Cool" flames produce $\mathrm{ROH}, \mathrm{RCHO}, \mathrm{RCOOH}$ and $\Delta \mathrm{T} \sim 100 \mathrm{~K}$



Oscillations occur because of both chemical and thermal feedback.


# Oscillating Reactions 

## Lotka-Volterra Mechanism

$$
\begin{aligned}
\mathrm{A}+\mathrm{X} & \rightarrow 2 \mathrm{X} \\
\mathrm{X}+\mathrm{Y} & \rightarrow 2 \mathrm{Y} \\
\mathrm{Y} & \rightarrow \mathrm{~B}
\end{aligned}
$$

[A] is held constant (replenished). [X] and [Y] oscillate.



Such a model can be applied to population biology,
e.g. $\mathrm{A}=$ grain; $\mathrm{X}=$ geese; $\mathrm{Y}=$ wolves; $\mathrm{B}=$ dead wolves!

## Oscillating Reactions

## Brusselator Mechanism (Prigogine et al.)

$$
\begin{aligned}
\mathrm{A} & \rightarrow \mathrm{X} \\
2 \mathrm{X}+\mathrm{Y} & \rightarrow 3 \mathrm{X} \\
\mathrm{~B}+\mathrm{X} & \rightarrow \mathrm{Y}+\mathrm{C} \\
\mathrm{X} & \rightarrow \mathrm{D}
\end{aligned}
$$

[A] and [B] are constant. [X] and [Y] settle down to a limit cycle:


## Oregonator Mechanism (Noyes et al.)

$$
\begin{aligned}
\mathrm{A}+\mathrm{Y} & \rightarrow \mathrm{X} \\
\mathrm{X}+\mathrm{Y} & \rightarrow \mathrm{C} \\
\mathrm{~B}+\mathrm{X} & \rightarrow 2 \mathrm{X}+\mathrm{Z} \\
2 \mathrm{X} & \rightarrow \mathrm{D} \\
\mathrm{Z} & \rightarrow \mathrm{Y}
\end{aligned}
$$

The B-Z reaction is of this general form, with

$$
\begin{aligned}
& \mathrm{X}=\mathrm{HBrO}_{2} \\
& \mathrm{Y}=\mathrm{Br}^{-} \\
& \mathrm{Z}=2 \mathrm{Ce}^{4+}
\end{aligned}
$$

