
Intermolecular Interactions in Liquids
The average properties of a gas mostly depend on kinetic energy.
The structure and properties of a liquid also depend on
potential energy, usually approximated  by a two-body model:
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The pair potential u describes the intermolecular interactions.
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Taking argon as an example,  σ = 3.40 Å;  rmin(LJ) = 3.82 Å.
In the solid, the atom-atom separation is 3.72 Å.



Collisions in Gases
The effective volume of a hard sphere is 4 x the sphere volume!
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The pressure is greater in a hard-sphere gas than an ideal gas.
Without attractive forces there is no gas-liquid condensation.
The ‘space’ occupied by each molecule is:
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This treatment ignores collisions between particles moving in
different directions.  The “average” collision is at right angles,
so the mean free path is reduced by √2.

1/ 2 1/ 2
2 2 B B B

rel 12 1 2
1 2

8 8 8k T k T k Tv v v v
m m

   
= = + = + =  π π πµ   

1
1(2) 2

12 12

1Then for molecule 1 moving among 2,   
v
v d N

λ =
π

1 2
1(2) 1(2) 12 12The collision rate  /Z v v d N−= τ = λ = π

2
12 1(2) 1 2(1) 2 12 12 1 2and  Z Z N Z N v d N N= = = π



Collisions in Liquids

“Intermolecular forces do not depend on velocities, so the
velocity distribution is valid for a liquid as well as a gas.”

However, there is ambiguity in the definition of a collision in a
liquid  –  there is no unique instant of contact

–  there is no mean free path.

The collision rate (inverse collision time) can be estimated:

a) from a ‘known’ potential.
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For liquid argon at 85 K, this gives τ = 0.5 ps.

b) from molecular properties, e.g.

c) by scaling the gas collision frequency with the diffusion
constant

The ‘residence time’ for a molecule in a solvent cage is
typically 100-100 times longer for a liquid of “normal” density.



“Structure” in Liquids
Liquid densities are similar to those of solids.
Crystals have ‘regular’ and extended structures.
Liquids may have local structure – ‘shells’ of neighbours.

The number of next nearest neighbours can be estimated:
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There are voids because of disorder in the shells.
A statistical representation is given by the

radial distribution function = pair correlation function

probability of finding molecule 2 at  from 1
probability of finding molecule 2 far from 1
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g(r) is determined experimentally by neutron (l) or X-ray (s)
scattering; and simulated numerically by:
Monte Carlo method:  102-104 molecules in random positions;
average properties calculated for many configurations.
Molecular Dynamics:  molecules initially random but new
positions calculated every fs from classical equations of motion.
Both methods use periodic boundary conditions.



Diffusion versus Activation
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Apply the steady-state approximation to {AB}:
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The effective rate constant has two limits:

Intermediate situations can be described by:
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Diffusion-limited Rate Constants

If the encounter pair has an equilibrium concentration,
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Stokes-Einstein equation:

 is the viscosity of the solvent,  is the hydrodynamic radius

6 for ideal Stokes diffusion (continuous medium)
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which does not vary much with rA/rB.
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It is determined by solvent properties!
The viscosity dominates the temperature dependence.



What if the Diffusion is not at Equilibrium?

This can happen when a reactant suddenly ‘appears’ in a
homogeneous solution of its reaction partner.
e.g. photogeneration of a transient species,
or stopping a particle (muon, positron, ...) from a beam.

At short times the reaction rate is enhanced by ‘contact’ pairs.
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In general, the rate “constant” is time dependent:
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