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Both MaxEnt and c-net approaches to modeling acceptability judgements construct a 
function F with parameters p. The function takes a word x as input and then outputs a 
number indicating the acceptability of the word. 

a = F(x,p) = F(x). 

There are two distinct aspects to the approach. One is the architecture of the network; the 
other is how the parameters p of the network are set by the training regime.  Here we 
address the first aspect, and show that our c-net approach has greater expressiveness than 
Hayes and Wilson’s MaxEnt architecture. We show that for any choice of constraints ci 
and weights wi used in the MaxEnt grammar, we can choose the number of hidden nodes 
and the weights on the connections so that the c-net agrees on acceptability judgements 
arbitrarily closely. We also give an example of a constraint that can be expressed in our 
network architecture but not in Hayes and Wilson’s architecture. 

The MaxEnt architecture developed in (Hayes and Wilson, 2008) can be characterized as 
follows: 

F(x)= exp( - ∑i wi ci(x) ) 

where ci are constraint functions and wi are the weights. Each ci returns either 0, 1, 2, ... 
for each word x, corresponding to the number of violations of a given constraint. 
Constraints must be given in terms of natural classes and must be translation invariant, 
i.e. constraints are always constraints in adjacent segments, but it does not matter where 
in the word adjacent segments are located.  Both ci and wi are determined by the learning 
algorithm. 

Our architecture is: 

F(x) = σ(δ -  ∑i wi  σ(bi + (V x)i)) 

Here δ, wi and bi are scalars. V is an h x n matrix, where h indicates the number of hidden 
units and n is the length of the input x; b1 and b2 are vectors; σ is a sigmoid function that 
gives values between 0 and 1.  (In our actual simulations we used a sigmoid running 
between -1 and 1, but we use this equivalent alternative here to simplify discussion.) 

First, considering that we are primarily interested only in relative judgements of 
acceptability we omit the outer function evaluations of both values for F, since exp and σ 
are both monotonic functions. Let us call this G. 

For Hayes and Wilson we have 

G(x)= -∑i wi ci(x). 

However, we will interpret each of their constraints as one constraint for each segment in 
the word, in which case ci(x) is either 0 or 1. 

For our model we have  



G(x) = -∑i wi σ(bi + (V x)i). 

We claim that a suitable choice of wi, bi and V can match our model arbitrarily close to 
their model. Choosing wi to be the same as their wi is straightforward. So it only remains 
to show that for each i. 

ci(x) = σ( bi + (V x)i) 

for some bi and V.  Dropping the subscripts, for each constraint c of Hayes and Wilson, 
we need to show that there is a scalar b and a vector v such that  

c(x) = σ (b+ ∑j v(j) x(j)), 

where v(j) denotes the jth entry of the vector v. 

The expression on the right gives the output of a perceptron with a smooth activation 
function σ. Let us first imagine that sigma is the step function and then we will consider 
our smoother case. This means that σ (b+ ∑j v(j) x(j))=1 if b+ ∑j v(j) x(j)>0 and it is 
equal to 0 otherwise. As is well known, not all Boolean functions can be computed by a 
perceptron, exclusive OR being a prominent example (McLeod et al., 1998). However, 
they are capable of matching the limited set of Boolean functions of feature values used 
by Hayes and Wilson in their MaxEnt grammar, as we will show. 

Hayes and Wilson use two types of constraints. The first prohibits a collection of feature 
values over one or more segments. For example, a constraint they propose for English 
onsets is  

*[+ant, +strid][-ant] 

which prohibits the cluster /sr/, among others. We will consider this constraint as 
applying to the first two segments of a form. 

This constraint can be captured by a perceptron as follows. Let j1,j2, j3 be the indices of 
the input nodes corresponding to [ant] for the first segment, [strid] for the first segment, 
and [ant] for the second segment, respectively. We want to find a scalar b and a vector v 
so that if x(j1)=1, x(j2)=1, and x(j3)=-1, then b+ ∑j v(j) x(j)) >0, but otherwise b+∑j v(j) 
x(j))<0. This is achieved by letting v(j1)=1, v(j2)=1, v(j3)=-1, all other v(j)=0, and b=-2.5.   

A similar idea works for any constraint of this type. Suppose a constraint is specified on J 
nodes with indices j1 through jJ by saying that there is a violation if for all k=1,2,…,J, 
x(jk)=ek, where each ek is -1 or 1. To capture this with a perceptron, let v(jk)=ek for 
k=1,…,J and v(j)=0 otherwise. Let b= -J+1/2. If all J of the relevant nodes have their 
prohibited values then ∑j v(j) x(j) = J, and b+∑j v(j) x(j))>0, causing the perceptron to 
return 1. However, if not all of the relevant nodes are active the perceptron will return 0 
as required. 

The other form of constraint considered by Hayes and Wilson is implicational. An 
example is  

*[+lab][^+son, +cor], 

which in their notation means that if a consonant is [+lab] it may only be followed by a 
consonant with [+son, +cor]. To capture this constraint with a perceptron, as before we 
let j1 correspond to [lab] on the first consonant, j2 correspond to [+son] on the second 



consonant, and j3 correspond to [+cor] on the second consonant. We then let v(j1)=1, 
v(j2)=-1/2, v(j3)=-1/2, and b=1/4. Suppose x(j1) =1. Then the only way to prevent the 
perceptron from being on (b+∑j v(j) x(j))>0) is if both x(j2) and x(j3) are both 1.  

More generally, suppose we have a constraint that x(ji)=ei for i=1,…,K implies that 
x(km)=fm for m=1,…,J. We assume that the indices ji and km are distinct, as they are for 
the constraints used by Hayes and Wilson. We let v(ji)=ei for all i, v(km)=fm/K for all m 
and all other entries of v be zero. Then we let b= J-1+1/K. It is straightforward to check 
that b+∑j v(j) x(j))>0 only if x(ji)=ei for all I, but for some m, x(km) is not equal to fm. 

The arguments above were all for the case where sigma is the step function. However, a 
perceptron with the step function can be approximated arbitrarily well with our sigmoid 
function if we multiply v and b by a sufficiently large positive constant. 

To show that our architecture has strictly greater expressiveness than Hayes and 
Wilson’s, consider a hypothetical constraint that requires at least one of the first two 
segments of a form to have the feature [lab]. This fits neither of the two constraint 
formats used in MaxEnt. To describe it in our architecture, let x(1), x(2) specify the 
feature [lab] for the first and second segment respectively. Then consider the constraint 
c(x) = σ( -x(1) -x(2) +0.5 ). For the discontinuous σ, c(x) is 1 if both x(1) and x(2) are 0 
and zero otherwise. For the continuous σ the constraint is approximately obtained by 
letting c(x) = σ( K(-x(1) -x(2) +0.5) ) for some large constant K. 

 


