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Abstract

Molecular dynamics refers to the computer simulation of aemal at the atomic
level. An open problem in numerical analysis is to explaia #pparent reliabil-
ity of molecular dynamics simulations. The difficulty is thadividual trajecto-
ries computed in molecular dynamics are accurate for ontytdime intervals,
whereas apparently reliable information can be extractad f/ery long-time sim-
ulations. It has been conjectured that long molecular dyostnajectories have
low-dimensional statistical features that accuratelyrapimate those of the origi-
nal system. Another conjecture is that numerical trajéesosatisfy the shadowing
property: that they are close over long time intervals tacekajectories but with
different initial conditions. We prove that these two vieave actually equivalent to
each other, after we suitably modify the concept of shadgwikey ingredient of
our result is a general theorem that allows us to take randemests of a metric
space that are close in distribution and embed them in the gaabability space
so that they are close in a strong sense. This result is sitnithe Strassen-Dudley
Theorem except that a mapping is provided between the tvabrarelements. Our
results on shadowing are motivated by molecular dynamitcapqly to the approx-
imation of any dynamical system when initial conditions seéected according to
a probability measure.

1 Introduction

In the form we consider here, molecular dynamics consistaadeling an atom-
istic system with a system of Hamiltonian ordinary diffdiehequations that are
numerically integrated. For given initial conditions infieation of physical interest
is extracted from the resulting approximate trajectoriels 1,20]. Despite the sci-
entific importance of molecular dynamics there is veryditiilgorous justification
of the results it produces. The problem is that individuajeictories computed by
molecular dynamics simulations are accurate for only divoe intervals. Numer-
ical trajectories diverge rapidly from true trajectoriesay the step-lengths used in
practice. This phenomenon is well-known but is not congidex short-coming of



molecular dynamics in practical terms [11, p. 81]. Expereehas suggested that
the features of trajectories that researchers wish to sitelgomputed accurately.
However, that trajectories are reliable in this sense hawyee rigorously demon-
strated in representative cases.

Two proposals have emerged to explain the success of matedtythamics given
the inaccuracy of the computed trajectories [28]. The firstrefer to asapproxi-
mation in distributionand the second ahadowing

The idea of approximation in distribution is to view both etxajectories and nu-
merical trajectories as stochastic processes. This is ldpuakawing initial condi-
tions from a physically appropriate probability distritmut rather than considering
a single fixed initial condition. Both the resulting numatitrajectory and the re-
sulting exact trajectory are then random. The proposabkisithsome distributional
(statistical) sense the numerical trajectories and exajetdtories are close to each
other. This means roughly that the probability of some ehappening for the nu-
merical trajectory is close to that of the same event hapggior the exact trajec-
tory. Putin this way, approximation in distribution may matd for arbitrary events
which depend on the position of every single atom in the syskéowever, usually
we are only interested in low-dimensional functions of ttegesof the full system.
An example we shall consider in the following is when one if/onterested in
the position of a single particle in a system consisting ohyngarticles. It may be
that for systems studied in molecular dynamics statisfeatures of trajectories
of single particles are reproduced accurately in simutatidpproximation in dis-
tribution for low dimensional functions of numerical trejeries has been studied
for model systems in [7,14,32] using a combination of analgad computational
experiments, though it has not been established for molistieaystems.

The idea of shadowing is to show that, even though a numerajakttory diverges
rapidly from the corresponding exact trajectory, it may begible to show that the
numerical trajectory is close to another exact trajectoity different initial con-
ditions. If shadowing holds, then numerical trajectoriesTf molecular dynamics
simulations can be viewed as real trajectories with somdl ohaervational er-
ror. Shadowing has been established for various types adrdigal systems with
uniform hyperbolicity properties [22] and these ideas Hasen applied to Hamilto-
nian dynamical system such as those studied in moleculardis [23]. However,
shadowing over arbitrarily long time intervals is probabbt possible for realistic
Hamiltonian systems [12]. Moreover, shadowing as it is Ugukefined does not
guarantee that statistical features of numerical trajeeganatch those of the exact
trajectories [15]. We will discuss these issues further stmalv how to modify the
concept of shadowing suitably so that it is applicable tocase and to other situa-
tions where the initial conditions of the dynamical systemdistributed according
to some probability measure.

The main purpose of this paper is to carefully define and dfyathiese two con-



cepts, approximation in distribution and shadowing, indbistext of molecular dy-
namics and to explain the relation between them. Our mairitrelsows that when
the two concepts are formalized and suitably modified theyaatually equivalent.

In Section 2 we introduce a model system for molecular dynarand present the
results of some numerical experiments performed with itfiv8éedemonstrate that
numerical trajectories using practical time steps diveggedly from exact trajec-
tories. We then provide evidence that statistical featofesome low-dimensional
functions of the trajectories are nevertheless reliable.

In Section 3 we discuss approximation in distribution anadsiwing in detail and
give quantitative versions of each idea. In particular wenshow to adapt the idea
of shadowing to situations where initial conditions aretribhsited according to a
probability measure. Our concept, which is a modificationhaf usual notion of
shadowing for dynamical systems, we call Weak Shadowing.

In Section 4 we prove our main result, Theorem 1, which weegtate. In what
follows, the spacéC|0, T])™is the set of all continuous trajectories [@nT] taking
values inR™. Forx,y € (C[0, T])™, we defin€gl|X — Y|l = SURcjo. [X(t) —Y(t)|. We
let M be a magR™ — R* and we defind1(x) € (C[0, T])X by M(x)(t) = M(x(t))
for anyx € (C[0,T])™. We letXy be a random initial condition i®™ and then de-
note byX the random member dfC[0, T])™ starting atXp and generated by the
differential equations. When we use a numerical method teigge an approxi-
mate solution to the differential equations at a sequengmirits, we useat to
denote the random element @0, T])™ generated by its linear interpolation. Fi-
nally, we denote by the well-known Prokhorov metric on random elements of
metric spaces which we will define in Subsection 3.1. It zeiconvergence in
distribution so that if two random elements of a metric spaeeclose according to
p they have approximately the same distribution.

Theorem 1 Let X be a random vector ifR™ such thatP(Xp = x) = 0 for any

x € R™M. Let X be the random trajectory {(C[0, T|)™ generated by a system of dif-
ferential equations starting fromgXLet Xy be the random trajectory ¢C[0, T])™
generated by a numerical method starting at et : R™ — RX be a map. Then
the following are equivalent for alt > O:

(A) Approximation in distribution .

P(M(X),M(Xar)) <&
(B) Weak Shadowing There is a map/p: : R™ — R™ such that ¥ = .5 Xg has

the same probability distribution apX@nd if Y is the random member @[O0, T])™
starting at ¥y generated by the flow of the differential equations then

P([|N(Xat) = M(Y) [l > €) < €.



Note that no assumptions are made about the differentialtems that generate the
exact trajectoryX nor about the numerical method that generates the approxima
trajectoryXa. The theorem just asserts that two ways in which a numerietihaod
can be accurate, (A) and (B), are equivalent. The theorera dokassert that (A)
or (B) holds for any particular system or any particular noeth

Showing that (B) implies (A) is straightforward, but the gerse requires the result
of Theorem 5, which is a version of the Strassen-Dudley #radB0], [9, §11.6].
The original Strassen-Dudley Theorem shows that two randamables that are
close with respect to the Prokhorov meipican be embedded in a new probability
space where they are close in a strong sense. Our contnbstio show how to do
this with one random variable defined as a function of therofiftee only important
extra assumption needed is that the measures induced bgrtlem variables be
non-atomic, which means that they assign zero measure tpaniy

Finally, in Section 5 we conclude with a discussion of whatmsult suggests for
the numerical analysis of molecular dynamics.

2 Numerical Experiments

We consider a system of = 100 point particles interacting on an 11.5 by 11.5
square periodic domain. We lgte T2" and p € R?" denote the positions and ve-
locities of the particles, witly; € T2, p; € R? denoting the position and velocity
of particlei. The motion of the particles is described by a system of Hami&n

differential equations:

dgq oH dp_ JH
dt  dp’ dt  4q’ @1
with Hamiltonian

1
H(ap) = 5lIpI3+ 3 Vis(lla — g ).

i<]

HereV,j; denotes the famous Lennard-Jones potential [11]. In ouulatmons we
use a truncated but infinitely smooth version [29, p. 2409]:

4 (% - i6) eXF{(r - rcutoﬂ)il]7 If r S rcutoff7
VLJ(r) — r r .
0, otherwise.
We setr .« — 2.5.

For our first numerical experiments we take our initial cdiodis g(0), p(0) to be
randomly distributed according to the probability densityction

Ce PH(ap) (2.2)



whereC is chosen so thatCe FH(%4P) dqd p= 1. The probability distribution with
this density function is known as the canonical distribatfor the system with
HamiltonianH at temperatur@ 1. Itis intended to model the equilibrium distribu-
tion of the system when itis in thermal contact with an envinent of temperature
B~ [24, Sec. 6.2]. For our experiments we fix@d= 1 and generatéqg(0), p(0))
according to (2.2) using Langevin dynamics [6]. We then mdbta constant vec-
tor from the velocities of all the particles so that centemafss of the system has
zero velocity. The canonical distribution for afly> 0 with this adjustment is in-
variant with respect to the dynamics described by (2.1)elLat this section we
will perform further experiments with a nonequilibrium gibution on the initial
conditions.

We numerically integrate (2.1) using the Stormer-Verlgtesne, which is an ex-
plicit second-order method for our system [13]. It is thengi@d numerical integra-
tor used in molecular dynamics [11, p. 69]. Given an init&, p°) = (q(0), p(0))
and aAt > 0, the Stormer-Verlet scheme generates a sequence o &ate"),

n > 0 such thatq", p") ~ (q(nAt), p(nAt)). The version of the algorithm we use is

qn+1/2 _ qn + pnAt/Z,
er—l _ pn _ AtDV(qu_l/z),
qn+1 — qn _"_ pn+1At/27

A practical steplength for simulations of our system with 8tormer-Verlet method

is At = 0.01. This choice ofit is close to the largest for which the system can be
integrated without an explosive instability in energy oe ihterval[0, 100Q for the
initial conditions we consider.

In the introduction we mentioned that researchers only idensow dimensional
information from a molecular dynamics simulations. For aumerical experi-
ments we will consider the configuration over time of the fpatticle: qi(t) €
T?,t € [0,T]. For the purposes of our experiments it helps to view the onotf
the particle as occurring iR? and starting at the origin. To this end, for the exact
trajectory we define

Q= [ pusds

and letQx(t) and Qy(t) denote the respectiveandy coordinates. We have that
Q«(0) = Qy(0) = 0 and if we lett vary in [0, T] thenQ € (C[0, T])2. Similarly, for
the numerical trajectory for eactt we define

n-1
Qn — pI .
2
We then defind,; to be the linear interpolation the tigg at the timesAt so that
QAt € (C[O7T]>2
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Fig. 1. First set of experiments. Plots of realizationafx vs. Qu y for three different ini-
tial conditions over the time intervéd, 20] with At = 0.01. The initial position is designated
by a circle and the final position by an X.

Ouir first set of numerical experiments demonstrates thetgtie¢ features of the
trajectoriesQ over the time interval0,20]. We select three random initial condi-
tions from the distribution given by (2.2) and plot in Figuréhe resulting numeri-

cal trajectories wheft = 0.01. At the scale shown here there was not a noticeable
qualitative difference between these plots and the sinpilats generated with a
smallerAt. The motion is highly irregular, looking somewhat like Bnoan mo-

tion in R2. However, unlike Brownian motion, the exact trajectof@are infinitely
smooth. The interpolated numerical approximatiQasare piecewise linear.

Our second set of experiments demonstrates that individajatctories computed
using the timestet = 0.01 are not accurate over time scales of interest. We ran-
domly generate one initial condition according to the caralndistribution and
then simulate ovel0, 10] for At = 0.01,0.005,0.0025. In Figure 2 we plaQat x(t)
versust for each of these steplengths. If the trajectory computet steplength
At = 0.01 is accurate over the time intery@l 10}, we expect that reducing the time
step by a factor of two would not yield a significantly diffatecurve. However,
we see that the two curves fét = 0.01 andAt = 0.005 very quickly diverge.
Moreover, we see that the trajectory with= 0.005 is not accurate either, since it
diverges quickly from the trajectory with timesté&p = 0.0025. Obtaining an ac-
curate trajectory over the intervgl, 10| and certainly ovef0,100 would require
At to be considerably smaller than what is used in practices $&ne convergence
behaviour is observed for all initial conditions selectedading to the canonical
distribution.

Our third set of experiments shows that despite the inacguwhindividual simu-
lations of the system, the statistical features of numEktregectories appear to be
highly accurate even foit = 0.01. Again we consider the trajectory of a single
particle for initial conditions drawn from the distributi@efined by (2.2). For each
randomly generated initial condition we compute the valiu ollection of func-
tionals of the numerical trajectories over the time intéy@, 104 and [0,1000.
We plot these values in histograms in order to observe theildifon of each
functional. We do this for each @t = 0.01,0.005 0.0025 and for five functionals
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Fig. 2. Second set of experiments. Compufgelt) versus for fixed initial conditions for
a range ofAt.

of the trajectory. The functiona: (R[0,T])?> — R we consider are

Fl(Q):Q( )

A(Q) == / Qu(t) sin(2mt/T) dt

F3(Q) = max QM)

F4(Q) =min{t € [0, T]: [|Q(t)[| > 1},

o) @ -QT D QT-1-QT-20) o

1Q(T) = Q(T =D IQAT — 1) —Q(T —21) ||’

F1 is simply thex-position of the particle at tim€. F, is the average dP(t) sin(2mt/T)
over [0, T]. Fs is the maximum distance from its initial condition that thertjcle
attains on[0, T|. F4 is the first time at which the particle leaves a ball of radius 1
centred at its initial condition. Its value was setTtaf the particle did not leave
within [0, T]. Fs is the cosine of the angle between two adjacent incremen(s of
just before timeT .

In Figure 3 we show histograms Bf{ Qa;) fori = 1,...,5 with the different values
of At over the time interval0,100. We also show the analogous histograms for
two-dimensional Brownian motioB(t) scaled so thaBy(t) and Qax have the
same variance. We see that for all five functions the histogranerated does not
appear to depend on the steplength used. As well, we seeothsdrhe of the

this matches closely the same histogram for Brownian motitvereas for others it
does not. Note that we do not expect the histograni@pto converge to those for
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Fig. 3. Third set of experiments for the time intery@100. Histograms off(Qa:) for
i=1,...,5. Each plot shows the result for the numerical trajectorh\wt = 0.01 (solid),
At = 0.005 (dashed)it = 0.0025 (dash-dot), as well as for Brownian motion (grey).

B: the exact trajector) and Brownian motiom do not have the same distribution.
These results are duplicated in Figure 4 where we show tHegmis plots for the
time interval[0,100Q.

Finally, in our fourth numerical experiment we repeat thevisus experiment but
we start with initial conditions that are drawn from a nons#iQrium distribution.
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Fig. 4. Third set of experiments for the time intery@100d. Histograms of (Qat) for
i=1,...,5. Each plot shows the result for the numerical trajectorh Wt = 0.01 (solid),
At = 0.005 (dashed)jt = 0.0025 (dash-dot), as well as for Brownian motion (grey).

We randomly generate the initial conditions by first drawirggn the equilibrium
distribution (2.2) as before. We then add 10 to the veloaityhie x direction of
the first particle. The typical trajectory arising from aitiad condition selected in
this way involves the first particle rapidly losing its exsesergy through collisions
with the other particles. Within 10 time units the systenfieatively indistinguish-
able from one started in the equilibrium state. As beforegemerate histograms of
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Fig. 5. Fourth set of experiments. Using initial conditiarawn from a non-equilibrium
distribution over the time intervd0, 10]. Histograms of5(Qxa) fori =1,...,5. Each plot
shows the result for the numerical trajectory with= 0.01 (solid),At = 0.005 (dashed),
At = 0.0025 (dash-dot).

the functions, ..., Fs, but now over the time interva0, 10 in order to highlight
the effects of the nonequilibrium initial conditions. Frgub shows the results of
these simulations.

For both the simulations from equilibrium and from non-édpium initial con-
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ditions the histograms for all the functiondts, ..., Fs are virtually identical for
the different step-lengths, in contrast to the case wherexaeined single trajec-
tories. Any differences are well within the statisticalardue to sampling only a
finite number of trajectories. This suggests that compuigtdiolutions of the func-
tionals withAt = 0.01 are fairly accurate for the distributions on the initiahdi-
tions we consider. The non-rigorous argument for this bedies as follows. If the
histograms were not accurate for the step length we werguian reducing the
steplength would cause the histogram to move significailiget to the histogram
for the exact solution. Thus the histogram would not staystme after halving the
steplength. The defect in this argument is that there coutldeory be a broad range
of values ofAt for which the apparently same wrong histogram is computed. A
approximately correct histogram could be only observeaftsr much small than
what we use. Despite this possibility, researchers gdgdrakt histograms and
other statistical information extracted from moleculandsnics trajectories [11].

3 Two Approaches

Here we review two different proposals for the success ofegdar dynamics:
approximation in distributiorandweak shadowingFor a distinct but related per-
spective, see [27].

In the following (C[0, T])™ denotes functions: [0, T] — R™. We useX; to de-
note a random initial condition iR™, X € (R[0,T])™ to denote the random exact
trajectory of a dynamical system starting@t andX; € (C[0, T])™ the random ap-
proximate trajectory with the same initial condition. Weaigine the approximate
trajectory to be generated by using a numerical method wehlengthAt and then
linearly interpolating the result. We measure the distaretveen two members
x,y of (R[0, T])™ by d(x,y) = [[X—¥||s = SURe[o.1) [X(t) —¥(¥)|. LetMT: R™ — R
be a map that extracts some low dimensional information fiteersystem, so that
the resulting low dimensional trajectories(i@[0, T])X areM(X) andM(Xa).

3.1 Approximation in Distribution

One explanation for the reliability of molecular dynamisshat if we let the initial
condition of a simulation be random, then the distributibthe resulting numerical
trajectory, seen as a random path(@{0,T])™, is close to the distribution of the
actual trajectory. We say that the trajectory is approxadan distribution. This
is also known as weak approximation. Here we review someeb#sic facts of
approximation in distribution [3].

Given a random variablX taking values inR, its distribution is the probability
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measure ofiR, %) defined byu(A) =P(X € A) for A€ %. Here % is the Borel
subsets oR. We say that two random variabl¥sandY have the same distribution
if P(X € A)=P(Y € A) forall Ac #. This is equivalent t& f (X) = Ef(Y) for all
measurableg . Note that two random variables need not be close on a réaliza
by-realization basis in order for their distributions toidentical.

The concept of distribution extends naturally to randonmextaking values ifR™
and indeed to random elements of any metric space as folldarssider a metric
space(.,d) with metricd and let% be the Borel subsets o¥ induced byd.

A random element of” is a measurable functiok : Q — . where(Q,.%#,P) is
some probability space. The distribution6bn.& is the probability measure given
by u(A) =P(X € A). As in the case of random variables, two random elem¥nts
andY of . can have the same distribution withoUtw) andY (w) being close for
any fixedw € Q.

Suppose we want to quantify how close the distributions ofrandom elements of
a metric space are to each other. A natural way to do this isfin&a metric on the
space of random elements of a metric space. One popularecisaice Prokhorov
metric, p, which we define here. It has the property that(X,Y) = 0 for random
elementsX andY if and only if X andY have identical distributions.

For a sefA C Sande > 0 we defineAé, the set of all points within distanaeof A

by
Af = {xec S|j/2£d(x,y) < g} ={xeS|d(xA) <e}. (3.1)

The Prokhorov metric is defined as follows.
Definition 2 [3, p. 72] For random variables X and Y in S

p(X,Y):=inf{e >0|P(X € A) <P(Y € A®) +¢}.

If we identify random elements & that have the same distribution, thenis a
metric on the set of random elements [9, p. 394].3fd) is separable (as are all
examples in this paper) random elemextsconverge in distribution tX if and
only if p(Xn, X) — 0[9, p. 395]. Note thap(X,Y) < 1 always.

A straightforward way to measure how closés to X, in distribution is to consider
P(X, Xat), where we viewX and Xy as random elements ¢€[0, T])™. However,

we generalize this idea by measuring how close the distabsitof low dimen-
sional functions of the full trajectories are. We conside mapl: R™ — RX,

and we measurp(M(X),M(Xat)), wherelM(X) andl(Xa;) are random elements
of (C[0, T])k. Choosingk = mandr to be the identity gives the approximation in
distribution ofXx; to X so this is a generalization of the original idea. As an exam-
ple, suppose the differential equations definkhdescribe the motion of a system
of particles inR?, so that the dimension of the system is o study the position

of one particle as a function of time, one could et R*" — R? be the function
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that simply returns the position of the first particle in thystem. This choice in
analogous to what we did for our model system in Section 2.

With these definitions in mind, we are led to a quantificatibowr belief that1(X)
andll(Xy;) are close in distribution: we conjecture that

p(M(X),N(Xa)) <&, (3.2)

for some smalk. For the conjecture to be applicable to molecular dynanwes,
must be able to contra and the length of the time interval in terms ofAt. We
conjecture that for all sufficiently smalt there are som€,D,E,p> 0

P(M(X),M (X)) < CALP,
for T < Dexp(—E/At).

One of the consequences of approximation in distributidh véspect to the Prokhorov
metric is that it allows us to bound the error we make in conmguthe expectation

of functionals of the paths. Suppose tfat(C[0, T])X — R is a bounded Lipschitz
continuous function of the paths. Let the nojim||s. be defined on the set of all
suchG by

G(x) -G
1Glla = suplG(x)] + supCX — S
X XF#Y ||X_yH°°

where the suprema are taken ovenaill € (C[O,T])k [9, p. 390]. We can define a
another metric on the space of random element€fd, T])¥ by

B(X.Y):= sup [EG(X)—EG(Y)],
Glle<1

originally defined in [10]. For any two random elemeKtandY of a metric space,
we have [9, p. 398]

3 1/2
p(X.Y) < <§B(X,Y)) , (3.3)

and [9, p. 411]
B(X.Y) < 2p(X,Y).

So (3.2) would implyB (M (X),M(Xa) < 2¢, and so
IEG(M(X)) —EG(M(Xat))| < 2/[G||BLe- (3.4)

Of course, most function§& of interest are not bounded, but similar results can
be obtained for unbounded, locally Lipschi& in the case thaG(M(X)) and
G(M(Xat)) have finite moments; see [8] for an example.
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3.2 Weak Shadowing

As we have discussed, numerical trajectories and exaetctmjes started at the
same initial condition typically rapidly diverge. One ididwat has been proposed is
that for every numerical trajectory there is an exact ttajgcstarting at a different
initial condition that stays close to the numerical trapegiover long time intervals.
This idea is known as shadowing. An early version of shadguwsrdescribed by
Bowen [5] for Axiom A systems, though see [2], [4, p. 381], §2@, p. 38] for ear-
lier descriptions. A general result in this area is that iffstem satisfies a uniform
hyperbolicity condition, then shadowing is possible owdinite time intervals [22].
This fact was used in [23] to study the long-time averages tregectories com-
puted with a symplectic method under the assumption thaPdiecaré section of
the flow is uniformly hyperbolic.

However, many systems that arise in applications are néaumiy hyperbolic [18,
Appendix B]. To the best of our knowledge, the only exampla physically real-
izable Hamiltonian system that is uniformly hyperbolic are®f its energy levels
is due to Hunt and Mackey [18], and this system is uncharatiteof systems that
arise in molecular dynamics. (Many billiard systems havenishown to be ergodic
and even mixing, but fail to be uniformly hyperbolic becatlsevector field is dis-
continuous at bounces [18, Appendix B].) For more realisyistems shadowing
has been numerically demonstrated over long but finite tmbervals [12], [16].
It remains to be seen whether shadowing over the long taajestcomputed in
molecular dynamics is possible.

Let us specify formally what shadowing would consist of im situation. Fixing a
time interval[O, T] we say thaY, an actual trajectory of the systemshadows the
numerical trajectoryy; if

1Y —Xatlleo < €.

Assuming that it is possible to shadow every numerical ¢tajg in this way, let
Y be the map that takes the initial condition of the numericéttoryX,; to the

initial condition of the exact trajectory that shadow:. This gives us our first
version of shadowing.

Shadowing Version 1 There exists”a: R™ — R™ such that if ¥ = .75 X then

1Y —Xatllo < €.

This version of shadowing is not sufficient for our purposgs:not strong enough
to show something like (3.4). The difficulty is that even tgbhueach numerical
trajectory is close to some exact trajectory, it could be thea distribution ofY is
completely different from that oK. This can result even if the distribution &
andYp are close because of the rapid divergence of trajectoriteeafystem. This
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would in turn imply, sinceXp; is close toY for everyXg, thatXy; is not close toX
in distribution.

In order for the statistical properties ¥fto be similar to that ok, it is necessary
that the mapx: preserves the measure on the initial condifignWe are lead to
the following concept of shadowing for initial value proiyie with a probability
measure on the initial conditions:

Shadowing Version 2 Given that X% has distributionv on R™ there is a map#a¢
onR™M such that¥x Xg also has distributiorv and

1Y —Xatlleo < €.

In practice we want to allow the possibility that shadowisgot possible for some
initial conditions. So to weaken Shadowing Version 2 sligiate conjecture:

Shadowing Version 3.Given that X% has distributionv on R™ there is a map#a¢
onR™M such that¥x Xg also has distributiorv and

Py ([]Y — Xat||o > €) < €.

With our application in mind there is an important way we cartifer weaken
Shadowing Version 3. As in the previous subsection[1etR™ — RK be a map
that takes configurations of the whole system and extrastsrldimensional infor-
mation. Then we could conjecture:

Shadowing Version 4.Given that % has distributionv on R™ there is a map#at
onR™M such that¥x Xg also has distributiorv and

Py(IM(Y) =M (Xat) [ > €) < €. (3.5)

This final form of shadowing is what we calleak shadowing

In the context of molecular dynamics, establishing weakiehéng for some phys-
ically interesting1 would be relevant if for all sufficiently smafit there were con-
stantsA, B,C, p > 0 such that (3.5) held with = AAtP for all T = Bexp(—C/At).
Note that all versions of shadowing presented here hold idetely for smalle
if T is fixed andAt is allowed to be arbitrarily small. However, this limit is thof
interest in molecular dynamics.

In order for weak shadowing to have the same explanatory pasédpproxima-
tion in Distribution, we need to show that it also allows udtand the difference
betweenEG(X) andEG(Xy;) for reasonable function, as in (3.4). To see that
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it does, again defind - ||gL as in the previous subsection and note that for any
G: (C[0,T])* — R, G is bounded byj|G||g. andG has||G||g. as a Lipschitz con-
stant. In that case:

IEG(M(X)) —EG(M(Xar))| = [EG(MN(Y)) — EG(M(Xat))|
< ||GllsLE +2||G[lcLP([MT(Y) — [ (Xar)[| > €)
< 3[|G[sLE,

where we have used the fact thatandY have the same distribution in the first
equality. This result is precisely (3.4) with a differennstant.

4  Proof of Main Result

Our main result, Theorem 1 in Section 1, asserts that Appration in Distribu-
tion (Equation (3.2)) and Weak Shadowing (Equation (3.59)emuivalent. In this
section we first state a more general result, Theorem 3, amghow how The-
orem 1 follows from it. Then we present the proof of Theoremi8cl uses our
main technical result, Theorem 5.

We say that a measureon a spacé&is non-atomidf v({x}) = 0 for every point
XeS

Theorem 3 Let®, ®: R™ — (C[0, T])¥ be measurable maps and letbe a non-
atomic measure oR™. Let % be a random vector ifRK with distributionv. Then
the following are equivalent for alt > O:

(A) Approximation in distribution:

A

P(P(Xo), P(Xo)) < .

(B) Weak Shadowing: There is a maps: R™ — R™ such that.¥Xg also has
distributionv and A

P([|®(7X0) — P(Xo) [l > €) < €.
Proof. To show that (A) implies (B) it is only necessary to apply Trezo 5 with
(Sd) = (T,e) = R™,[|-])), X =Y = Xo, (S§d) = ((C[0, T])X,[| - [|eo), M1 = P4,
M, = ®,. The theorem then gives a mgp R™ — R™M such thatpXy has the same
distribution asXy and

P(||P(Y(Xo))) — P(Xo) [ > €) < €.

To show that (B) implies (A), it is only necessary to see tiBgtinplies

P(P(SX0), B(Xo)) <
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Since”Xp is equal in distribution t&g and equality in distribution is preserved un-
der measurable map®(.#Xo) is equal td1(Xp) in distribution. Since the Prokhorov
metric p only depends on distributions, we have tpatb(Xy), ®(Xp)) < € as re-
quired. O

Proof of Theorem 1L et ® be the map that takes initial conditiof to N(X). Let
® be the map that takeXy to M (Xa). Let v be the distribution ofXy. Then the
theorem follows. O

Remark: Though we have motivated our result in termsiobeing the exact flow
of a system of differential equations ad being the trajectory generated by a
numerical method, the result can be much more broadly apgieparticular,®
and® can be the flow maps of any two dynamical systems on the sateesgce.

It only remains to prove Theorem 5, which is the heart of TReoB above. The-
orem 5 is similar to the Strassen-Dudley Theorem [9,30] Whie state here for
reference:

Theorem 4 ([3, p. 73]) Let (S,d) be a separable metric space. If X and Y are
random elements of S wifh(X,Y) < B, then there are random elementsandY

of S defined on a common probability space suchXhhas the same distribution
as X,Y has the same distributionas Y and

P(d(X,Y) > B) < B.
]

In contrast, our theorem is as follows. Recall that the ilistion of X, a random
element ofS, is non-atomic whei?(X = x) =0 for allxe S

Theorem 5 Let X be a random element of the separable complete metricespa
(S d). Let Y be a random element of the separable complete metme$p, €).
Suppose that the distributions of both X and Y are non-atobat(S,d) be an-
other separable complete metric space, andllet S— S andl,: T — S be mea-
surable maps. Lep denote the Prokhorov metric on random element&Sod). If
p(M1(X),M2(Y)) < B then there is a measurable mgp S— T such thaly = X
has the same distribution as Y and

P(d(M1(X),M2(Y)) > B) < B. (4.1)
Taking (S, d_) = (S, d) = (T,e) andly andl1; to be the identity gives the following
simple corollary that is easier to compare with Theorem 4.

Corollary 6 Let(S d) be a separable complete metric space. Let X and Y be ran-
dom elements of S with non-atomic distributiong.(X,Y) < B, then there is mea-
surable mapp from (S,d) to itself such tha¥ = /X has the same distribution as
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Y and

P(d(X,Y) > B) < B.

This result is stronger than Theorem 4 in that instead ofdhéanced to have a
new probability space and define two new random variaklesdY, we are able

to leaveX as it is and defin& to be a random variable on the same space that
X is defined on. This extra strength is necessary for us in doderake the con-
nection with shadowing in Theorem 3. The extra cost is thatssime that the
metric spaces in whici andY live are complete and, more importantly, that the
probability distributions oX andY are non-atomic.

To see that the assumption of non-atomicity is essentiabnolary 6, and hence in
Theorem 5, consider the following example. For any(0,1/2) letQ = {0,1} and
let # be all the subsets @. Let the probability measur® be defined byP(0) =
1/2—¢,P(1) =1/2+ €. Then(Q,.#,P) is a probability space. Define random
variablesX andY by X(0) = 0,X(1) =1,Y(0) = 1,Y(1) = 0. It is straightforward
to check thap(X,Y) = €. HoweverY is theonlyrandom variable ofQ,.#, P) that
has the same distribution ¥sandP(|X —Y| > 1/2) = 2¢. SoP(|X—Y| > €) > &,
and the result cannot hold.

Now we turn to the proof of Theorem 5. Many of the ideas usetdéroof of the
Strassen-Dudley Theorem reappear here, including theftise Blarriage Lemma.
Before the proof we need several lemmas that allow us to naisheasure iso-
morphisms between various spaces and also to divide spacemany pieces of
equal measure.

Lemma 7 [25, p. 327] Let(S,d) be a complete separable metric space with Borel
o-algebra #(S). Let u be a non-atomic probability measure @8, %4(S)). Let
([0,1], #([0,1]), A) be the unit interval with Lebesgue measure defined on the
Borel sets. Then there is a subsgtdb S withu(S) = p(S) and subset ¢.of [0, 1]

with A (Lo) = A ([0, 1]) such that there is a measurable invertilgle Sy — Lo such

that u(@—1A) = A(A) for all A € %([0,1]) N Lo. O

Lemma 8 Let(S,d) and(T, e) be two complete separable metric spaces with Borel
o-algebras#(S) and #(T) respectively. Letis and it be non-atomic probability
measures oS, Z(S)) and(T, Z(T)) respectively. Then there is a measurable map
Y: S— T such that

Hs(WHA) = pr (A)
forall Ae A(T).

Proof. Use Lemma 7 to construct subsets of full meastsy@ndTp in Sand T
with measure preserving invertible maps: S — L1 andys, : To — Lo. LetS =
Yyl N gL, and lety equalys, My restricted to this set. Lef be the image
of S undery. Now extendy in an arbitrary measurable way to all &f 0J

Lemma 9 Let (S d) be a complete separable metric space with Baredlgebra
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A(S). Let u be a non-atomic probability measure @8, %). Given any subset
T € A(S) with u(T) = m< 1 and any finite set of real numberg,m=1,....n
with 5 m; = m there is a partition of T

T:UP:]_Ti
with p(Tj)) =m, i=1,...,n.

Proof. We begin by proving the result for th& d) being the unit intervalo, 1]
andu Lebesgue measure. Then we use the previous lemma to esthigligeneral
case.

Let T be a Borel subset db, 1] with Lebesgue measura. Consider the function
o :[0,1] — [0, m] defined by

o(X) =A(TNI[O,X]).

SinceA is non-atomico is continuous. Letnp = 0 andm = zijzl m;. Let T =
o Y([m_1,m)) for 1 <i<n—1andT,= o }([m,_1my)). Itis straightforward to
show that thel; satisfy the required conditions.

For the case of gener&f d), let ¢, S, Lo be as given by Lemma 7. The subset
of [0,1] given by /(T NSy) has measurm. By the previous case this can be parti-
tioned inton subsets; with A (R)) = m that are all subsets &b. Let T, = ¢ 1(R)
forL<i<n—landT,= ¢ (R U(T\S). Itis straightforward to show that
have the required properties. O

Lemma 10 Let(S d) be a complete separable metric space with non-atomic prob-
ability measureu on it. Let(S,d) be another complete separable metric space and
M: S— S a measurable map. For amy> 0 there is ad < € and a finite partition
of S

S=SU (UE:]_S(),
such that

(i) u(S&) = o for all k,
(i) diam(N(&()) < € for all k,

(iii) u(s) < e.
Moreover, this is possible for all sufficiently small

Proof. Letx;, i > 1 be a dense sequence of pointérget B € Sbe the inverse
image undefl of the open ball of radius/2 aboutx; in S. Fori > 1 let

B_i = B; \Uij_:llBj.
Then theB; are disjoint, diani(B;)) < & and have unio®. Choosen such that

m

Zlu(l??i) >1-¢/2.
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Now choose a sufficiently smallso thatmd < £/2. Using Corollary 9 divide each
Bi into ki setsB; j with u(B; j) = & and one additional s&'" with u(B;) < . Now
there are finitely many sei; j all having measuré. Call these setS;. Condition

(i) is then satisfied. Each has diameter less thasince each is a subset of some
Bi. So condition (ii) is satisfied. If we l&&* = S\ Uy_; S, we have

B(S) =p <S\_§u<§>> -3 HE)

<g/2+md =g,
showing that condition (iii) is satisfied. O

Proof of Theorem S.et a = p(M1(X),M2(Y)) < B. Consider ang > 0, which we
will fix later to obtain the required result.

Use Lemma 10 to construct finite partitions®&ndT,
S=SU(ULS), T=T U(ULT),

such that
PXeS)<e, PNYeT")<eg,
and for alli
diamM(S)) <&, diam{y(T)) < ¢,
P(XeS)=P(YeT)=0<ce.
We can use the sandefor bothSandT since Lemma 10 shows that for eacthe
construction is possible for all sufficiently small

We will construct a 1-1 mapping from the set{1,...,n} to itself such that for
mosti we haved(M1(S),M2(Ty))) < a +&. In other words, for mostthere will

be a point inM3(S) and a point iM2(Ty)) that are within distance + € of each
other. Based oip, we will then use Lemma 7 to construct a mfymn Sthat takes
S to Ty and such thatyX has the same distribution & We will construct the
map @ with the help of the Marriage Lemma of Konig and Hall [9].

Lemma 11 (See [9, p. 406].) Let K denote a relation 4#,...,n} such that for
all subsets A of1,...,n}

[{]j € A: iKj for some ic A}| > |A| (4.2)

where| - | denotes cardinality. Then there is a 1-1 mappingf {1,...,n} to itself
such thag Ko(i) for all i. O

Ideally we would define the relatidgtion {1,...,n} by saying thaiK; if d(M(S),M2(Tj))
< o + €, and then using the Marriage Lemma to construct a mapgiagch that
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d(M1(S),N2(Ty))) < a + & for all i. However, in general (4.2) does not hold for
this definition ofK, and such & does not exist.

Instead, we construct a mapsuch thatl(M(S), M2(Ty())) < o + € only for most
i, as follows. We append tf1,...,n} k extra indicesn+1,...,n+ k. Now for
i,j€{1,...,n+k} we say thatK; if either

(1) d(M1(S),M2(Tj)) < a +e¢,

(2) i>n,or

3) j>n.

Now let A be a subset of1,...,n+k}. Either A contains at least one of+
1,...,n+koritdoesnt. In the former case (4.2) holds immediatelytHa latter
case, leGy = UjcaS. We have that

P(X € Sa) = |A|d.
Let .
B={ze S: d(M1(Sa),M2(2)) < a+¢€},
so that
P(Y € B) =P(d(M1(Sa),M2(Y)) < a+¢)
> P(d(M1(Sa), M2(Y)) < a)
=P(M2(Y) € N1(Sw)9)

Then sincep(M1(X),M2(Y)) =a,
P(M1(X) € N1(Sa)) < P(M2(Y) € M1(S8)7) +a.
This fact yields
P(YeB)>P(MNy(X) eMNi(Sa) —a>P(XeSy)—a=|Ad—a.
So the number of sef§ that have some portion B is at least
(JAd—a—-P(Y€T"))/0>|A—(a+¢g)/d.
For all thesg < nthere is somec A such thatK;.

When we include all thg > n, the total number of such tha{K; for somei € A
is then at leasiA| — (a +€)/0+k. So if we letk= [(a +¢€)/d], and then relation
Kon{l,...,n+k} satisfies the conditions of the Marriage Lemma.

This gives us that there is a 1-1 meanoetween{l, ...,n+Kk} and itself such that
iKoi) for all i. We want to get a map 1-1 mapon {1,...,n} so thatKy; for most
i. Consider whatp does to the sefl,...,n}. At leastn — k elements get mapped
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back to{1,...,n}. Let ¢(i) = ¢(i) for these elements. For all the others, just let
@(i) be extended to be 1-1 d4d, ..., n}.

Now we have an invertible mapon{1,...,n} such that fon—k of the elements

d(M1(S), M2(Tyq))) < a +e.

Using Lemma 8, for eachthere is a mag; : § — Ty;) such that for any measur-
able subset of §

P(X €C) =P(Y € ¢5(C)).
Again use Lemma 8 to construct a mgip: S* — T* such thatP(X € C) =P(Y €
W, (C)) for all measurabl€ C S*. Now let: S— T be defined by requiring that
Y restricted taS is ¢ and thaty restricted toS" is .. Then for any measurable
subseC of S

P(X €C)=P(Y € yC).

This means that if we l&t = X, for any measurable subdetof S

P(Y €eD)=P(pX € D) =P(X € y~'D) =P(Y € gy~ D) = P(Y € D)
as required.

It remains to show that satisfies equation (4.1). Now for— k indicesi

d(M1(S),M2(Ty())) < a+e.

If X € § thenY € Ty, and

d(M(X),N2(Y)) < o + €+ 2¢,

sincel1(S) andMz(Ty)) have diameters smaller than So with probability at

leastd(n— k) we have that(M1(X),M2(Y)) < a + 3¢. Since I=nd +P(X € S")
andP(X € §) < ¢,

P(d(M1(X),M2(Y)) > a+3¢) <kd+e=9d[(a+¢)/d]|+d0<a+e+20<a+3e.

Choosinge so thata + 3¢ < 8 then gives our result. O

5 Discussion

Suppose we are considering a particular molecular dynasitradation over along
time interval[0, T] started from random initial conditions. We wish to deterenin
what statistical features of its trajectories are compugdiebly. A simple baseline
conjecture would be that all statistical features of thgetri@ries are computed ac-
curately. As we have detailed above, a quantitative versiomis conjecture would
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be to say thap (X, Xat) = € for some smalk > 0. Then Theorem 1 states that with
probability greater than 4 €, the numerical trajectory is shadowed by an exact tra-
jectory to within errore. In this case, it should be possible to detect shadow trajec-
tories numerically using the techniques of [17], even thotng shadows computed
will not necessarily have the correct measure on theirahttbnditions. Find such
shadow trajectories would be partial confirmation théx, Xa;) is small.

The other possibility is thad (X, Xat) is not small. Suppose instead tipaX, Xa;) >
1/2. Now (3.3) implies thaB (X, Xat) > 1/6. This means that

[IEG(X) —EG(Xat)[| > 1/6 (5.1)

for someG: (C[0,T])™ — R with ||G||sL. Hence one way to confirm tha(X, Xa;)
is large is to find such & such that we empirically observe (5.1).

In principle this approach is reasonable, but in practieegpace of all functions
G: (C[0,T])™— R with ||G||sL = 1 is huge for a realistic molecular dynamics sim-
ulation. In practice it may be that only for very unusual ftioes G do EG(X) and
EG(Xat) disagree significantly. One practical way to approach thisistart with
very low-dimensional systems. The lowest dimensionalesysthat is a reason-
able model of molecular dynamics consists of two particles édwo-dimensional
periodic domain [31]. For example, one could study the systee considered in
Section 2 but with only two particles. Using the softwareila@e to compute exact
shadow trajectories of numerical trajectories [17] wouldw where shadowing is
not possible and could suggest what functiGare likely candidates.

We have been considering the case whgie the identity, for which it may be that
p(MN(X),M(Xat)) is large. The other direction to study these systems is tossha
I that is a very low dimensional function of the state of theeysand then see if
it is possible to numerically perform weak shadowing witts tthoice. Currently
there have not been algorithms developed to do this, butitisection for future
work.

Finally, besides these numerical/experimental apprceitieze are more analytical
approaches. These would involve studying one of the mod#érys for molecu-
lar dynamics available that are analytically tractablethBihe systems studied in
[19] and [21] consist of single particle coupled to a bath ekay large or infinite
number of smaller particles. In both cases it is shown thatdilstribution of the
path of the large particle converges to a stochastic prabessan be simply de-
scribed through low-dimensional stochastic differergghations. These situations
are clean enough that similar results for the numericakeismation of the Hamil-
tonian equation may be possible, thus establishing apmetion in distribution
for the path of the distinguished particle. Our result thiémwes us to conclude that
weak shadowing is possible.

Our work allows the possibility of studying the reliabilityolecular dynamics in a
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variety of contexts from one of two directions: either thatistical one through the
computing of histograms, or the dynamical one through tmepding of shadow-
ing trajectories.
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