Discretization and Solution of Convection-Diffusion Problems

Howard Elman University of Maryland

Overview

- 1. The convection-diffusion equation
 - Introduction and examples
- 2. Discretization strategies
 - Finite element methods
 - Inadequacy of Galerkin methods
 - Stabilization: streamline diffusion methods
- 3. Iterative solution algorithms
 - Krylov subspace methods
 - Splitting methods
 - Multigrid

The Convection-Diffusion Equation

$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f \text{ in } \Omega \subset \mathbb{R}^d, \ d = 1,2,3$$

Boundary conditions:

$$u = g_D \text{ on } \partial \Omega_D$$

$$\frac{\partial u}{\partial n} = g_N \text{ on } \partial \Omega_N$$

Inflow boundary:

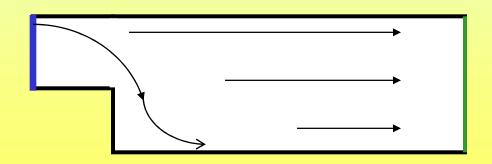
$$\partial \Omega_{+} = \{ x \in \partial \Omega \mid w \cdot n > 0 \}$$

Characteristic boundary:

$$\partial \Omega_0 = \{ \mathbf{x} \in \partial \Omega \mid \mathbf{w} \cdot \mathbf{n} = 0 \}$$

Outflow boundary:

$$\partial \Omega_{-} = \{ x \in \partial \Omega \mid w \cdot n < 0 \}$$



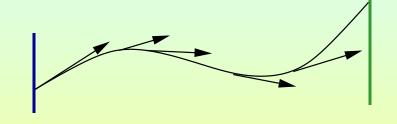
The Convection-Diffusion Equation

$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f$$

Challenging / interesting case: $\varepsilon \rightarrow 0$

Reduced problem: $w \cdot \nabla u = f$, hyperbolic

Streamlines: parameterized curves c(s) in Ω s.t. c(s) has tangent vector w(c(s)) on c



$$\Rightarrow (\nabla u) \cdot w = \frac{d}{ds} u(c(s)) = f$$

Solution u to reduced problem = solution to ODE

If $u(s_0) \in \text{inflow boundary } \partial \Omega_+$, and $u(s_1) \in \partial \Omega$, say outflow $\partial \Omega_-$, then boundary values are determined by ODE

Consequence
$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f$$

For small ε , solution to convection-diffusion equation often has **boundary layers**, steep gradients near parts of $\partial\Omega$.

Also: discontinuities at inflow propagate into Ω along streamlines

Simple (1D) example of first phenomenon:

$$-\varepsilon u'' + u' = 1 \text{ on } (0,1),$$

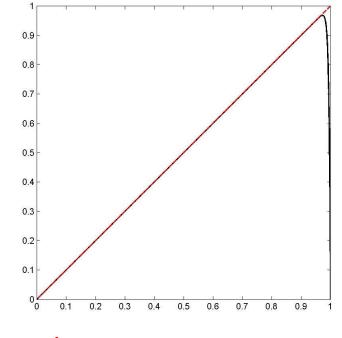
 $u(0) = 0, u(1) = 0$

Solution

$$u(x) = x$$

$$-e^{-(1/\varepsilon)(1-x)} \left(\frac{1 - e^{-x/\varepsilon}}{1 - e^{1/\varepsilon}} \right)$$

$$\approx x \text{ except near } x = 1$$



4

Solution to reduced equation

Additional Consequence

These layers (steep gradients) are difficult to resolve with discretization

Conventions of Notation

L = characteristic length scale in boundary e.g. length of inflow boundary

 $\hat{x} = x/L$ in normalized domain

W = normalization for velocity (wind) w, e.g. $w = W w_*$ where $||w_*|| = 1$

In normalized variables:

$$-\nabla^2 u_* + \left(\frac{WL}{\varepsilon}\right) w_* \cdot \nabla u_* = \left(\frac{L^2}{\varepsilon}\right) f$$

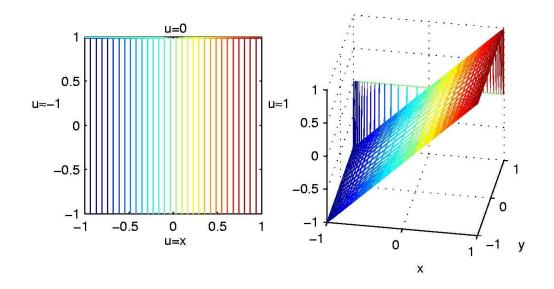
$$P \equiv \frac{WL}{\varepsilon}$$
, Peclet number, characterizes relative contributions of convection and diffusion

Reference Problems

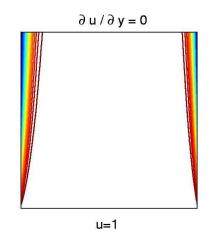
$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f$$

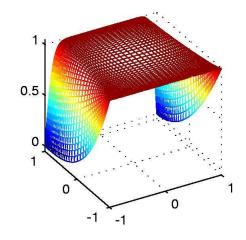
1. w=(0,1)
Dirichlet b.c.
analytic solution

$$u(x, y) = x \left(\frac{1 - e^{-(1 - y)/\varepsilon}}{1 - e^{-2/\varepsilon}} \right)$$



2. $w=(0,(1+(x+1)^2/4))$ Neumann b.c. at outflow characteristic boundary layers

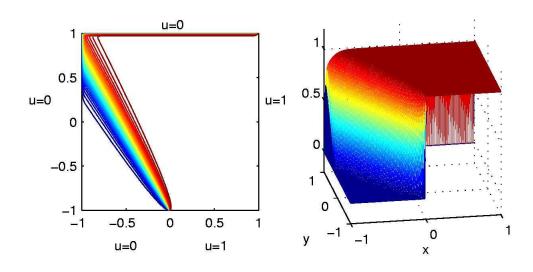




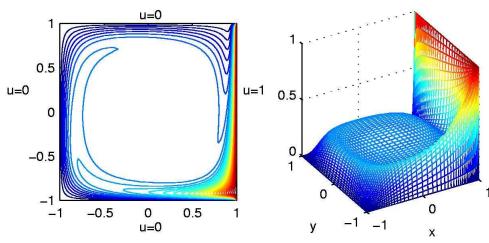
Reference Problems

$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f$$

3. w: 30° left of vertical interior layer from discontinuous b.c. downstream boundary layer



4. *w*=recirculating (2y(1-x²),-2x(1-y²) characteristic boundary layers discontinuous b.c.



Weak Formulation

$$-\varepsilon \nabla^2 u + w \cdot \nabla u = f$$

Find $u \in H_E^1(\Omega)$ s.t. for all $v \in H_{E_0}^1(\Omega)$,

$$\int_{\Omega} \varepsilon \nabla u \cdot \nabla v + (w \cdot \nabla u)v = \int_{\Omega} fv + \int_{\partial \Omega_N} vg_N$$

$$H_E^1(\Omega) = \{ v | v = g_D \text{ on } \partial \Omega_D \}$$

$$H_{E_0}^1(\Omega) = \{ v | v = 0 \quad \text{on } \partial \Omega_D \}$$

Shorthand notation: a(u,v) = l(v) for all v

Can show:

$$a(u,u) \ge \varepsilon ||\nabla u||^2 = \varepsilon \int_{\Omega} \nabla u \cdot \nabla u$$

$$a(u,v) \le (\varepsilon + ||w||_{\infty} L) ||\nabla u|| ||\nabla v||$$

$$l(v) \le C ||\nabla v||$$

Lax-Milgram lemma — existence and uniqueness of solution

Approximation by Finite Elements

Given finite dimensional $S_E^h \subset H_E^1$, $S_0^h \subset H_{E_0}^1$,

find $u_h \in S_E^h$ such that for all $v_h \in S_0^h$,

$$\varepsilon \int_{\Omega} \nabla u_h \cdot \nabla u_h + \int_{\Omega} (w \cdot \nabla u_h) v_h = \int_{\Omega} f v_h + \int_{\partial \Omega_N} v_h g_N$$

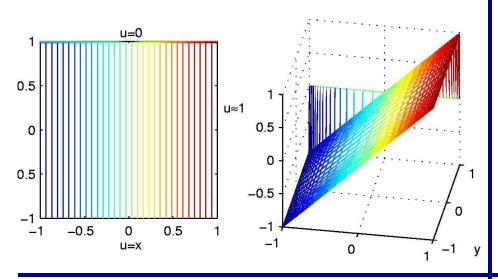
$$a(u_h, v_h) = l(v_h)$$
 for all v_h

Typically: finite element spaces are defined by low-order basis functions, e.g.

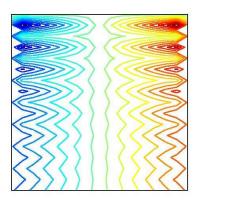
- linear or quadratic functions on triangles
- bilinear or biquadratic functions on quadrilaterals

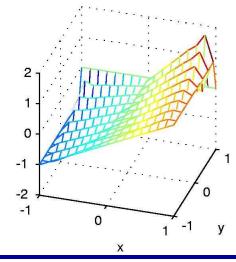
What happens in such cases?

Problem 1, accurate

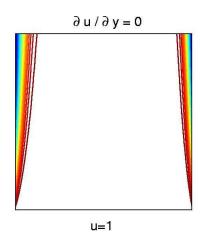


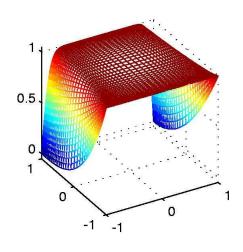
Problem 1, inaccurate



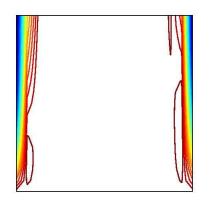


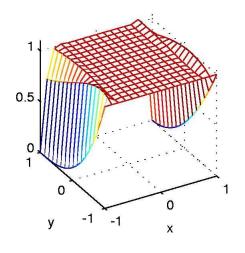
Problem 2, accurate





Problem 2, inaccurate





Explanations

1. Error analysis: discrete solution is quasi-optimal:

$$\|\nabla(u-u_h)\| \leq \frac{\Gamma_w}{\varepsilon} \inf_{v_h \in S_E^h} \|\nabla(u-v_h)\|,$$

$$\Gamma_{\rm w} = 1 + \frac{WL}{\varepsilon} = 1 + P$$
, large if ε is small

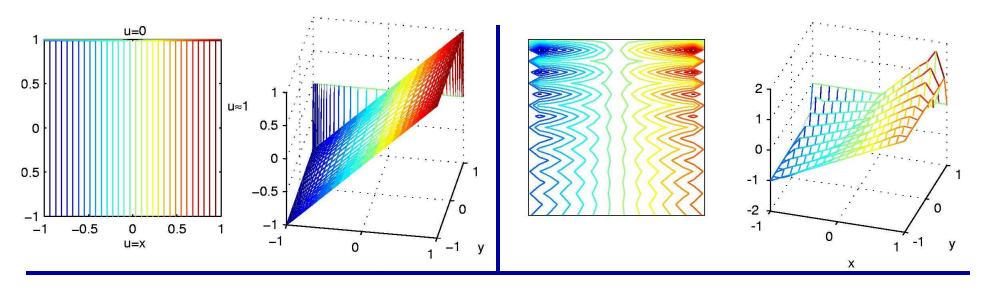
2. Mesh Peclet number:
$$P_h = \frac{Ph}{2L} = \frac{Wh}{2\varepsilon}$$

If $P_h > 1$, then

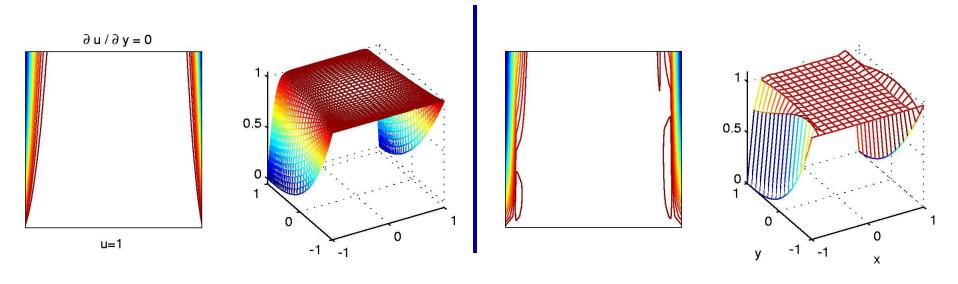
- there are oscillations in the discrete solution
- these become pronounced if mesh does not resolve layers
- oscillations propagate into regions where solution is smooth
- problem is most severe for *exponential* boundary layers

Revisit two examples

Problem 1, exponential layer, width $\sim \varepsilon$



Problem 2, characteristic layer, width $\sim \epsilon^{1/2}$



Fix: The Streamline Diffusion Method

Petrov-Galerkin method: change the test functions

Galerkin:
$$a(u_h, v_h) = l(v_h)$$
 for all v_h

Petrov-Galerkin:
$$a(u_h, v_h + \delta w \cdot \nabla v_h) = l(v_h + \delta w \cdot \nabla v_h)$$
 for all v_h

 δ is a parameter

Result:
$$a_{sd}(u_h, v_h) = l_{sd}(v_h)$$

Streamline diffusion term

$$a_{sd}(u_h, v_h) = \varepsilon \int_{\Omega} \nabla u_h \cdot \nabla u_h + \int_{\Omega} (w \cdot \nabla u_h) v_h + \delta \int_{\Omega} (w \cdot \nabla u_h) (w \cdot \nabla v_h)$$

$$-\delta \varepsilon \sum_{k} \int_{\Delta_k} (\nabla^2 u_h) (w \cdot \nabla v_h) \qquad \mathbf{0} \text{ for linear/bilinear}$$

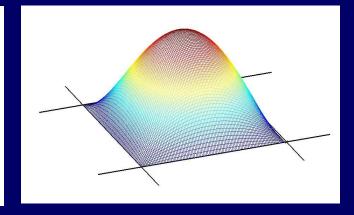
$$l(v_h) = \int_{\Omega} f v_h + \delta \int_{\Omega} f(w \cdot \nabla v_h) + \int_{\partial \Omega_N} (v_h + \delta w \cdot \nabla v_h) g_N$$

The Streamline Diffusion Method Explained

Augment finite element space:

$$\hat{S}^{h} = S^{h} + B^{h}$$

B^h: bubble functions, with support local to element



Principle: augmented space \hat{S}^h places basis functions in layers not resolved by the grid

We could pose the problem on the augmented space: find u_h in \hat{S}^h s.t. $a(u_h, v_h) = l(v_h)$ for all v_h in \hat{S}^h

Then: decouple unknowns associated with bubble functions from system \longrightarrow *new problem* on original grid

The Streamline Diffusion Method Explained

Under appropriate assumptions: this new problem is

$$a_{sd}(u_h, v_h) = l_{sd}(v_h)$$

$$a_{sd}(u_h, v_h) = \varepsilon \int_{\Omega} \nabla u_h \cdot \nabla u_h + \int_{\Omega} (w \cdot \nabla u_h) v_h$$
$$+ \sum_{\Delta_k} \delta_k \int_{\Delta_k} (w \cdot \nabla u_h) (w \cdot \nabla v_h)$$
$$l(v_h) = \int_{\Omega} f v_h + \sum_k \delta_k \int_{\Delta_k} f(w \cdot \nabla v_h)$$

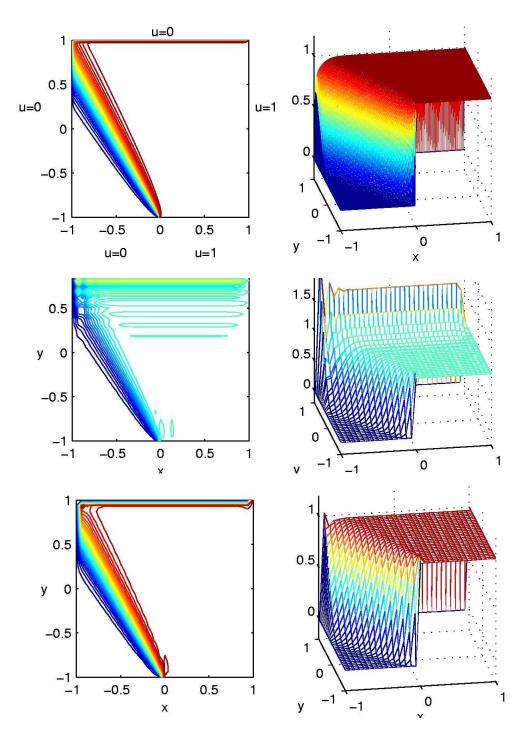
 δ_k determined from elimination of bubble functions $\equiv Streamline \ diffusion$

Compare Galerkin and Streamline Diffusion

Top: accurate solution, $\varepsilon=1/200$

Middle: bilinear elements, Galerkin, 32×32 grid

Bottom: bilinear elements, streamline diffusion, 32×32 grid



Error Bounds

For Galerkin: as noted earlier, quasi-optimality:

$$\|\nabla(u-u_h)\| \leq \frac{\Gamma_w}{\varepsilon} \inf_{v_h \in S_E^h} \|\nabla(u-v_h)\|$$

More careful analysis: for linear/bilinear elements,

$$\|\nabla(u-u_h)\| \le Ch\|D^2u\|$$
 Large in exponential boundary layers for small ε

For streamline diffusion: use norm

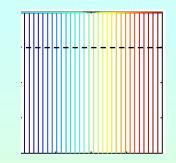
$$\|v\|_{sd} \equiv \left(\varepsilon \|\nabla v\|^2 + \delta \|w \cdot \nabla v\|^2\right)^{1/2}$$

Then

$$\|u - u_h\|_{sd} \le Ch^{3/2} \|D^2 u\|$$

These bounds do not tell the whole story

For one example (Problem 1, ε =1/64), compare errors $\|\nabla(u-u_h)\|$ on Ω and $\Omega_* = (-1,1)\times(-1,3/4)$ (to exclude boundary layer)



Grid (P _h)	Galerkin Ω	Str.Diff. Ω	Galerkin Ω_*	Str.Diff. Ω_*	
8×8 (8)	5.62	4.34	3.25	8.16e-7	
16×16 (4)	4.91	4.01	1.48	1.64e-5	
32×32 (2)	3.81	3.23	5.30e-2	1.11e-5	
64×64 (1)	2.39	2.39	4.98e-7	4.98e-7	

Choice of parameter δ

Made element-wise:
$$a_{sd}(u_h, v_h) = \varepsilon \int_{\Omega} \nabla u_h \cdot \nabla u_h + \int_{\Omega} (w \cdot \nabla u_h) v_h$$

 $+ \sum_{\Delta_k} \delta_k \int_{\Delta_k} (w \cdot \nabla u_h) (w \cdot \nabla v_h)$

$$\delta_k = \begin{cases} \frac{h_k}{2|w_k|} \left(1 - 1/P_h^k\right) & \text{if } P_h^k > 1\\ 0 & \text{if } P_h^k \le 1 \end{cases}$$

Matrix Properties

Given a basis $\{\varphi_j\}_{j=1}^n$ for S_0^h , extended by $\{\varphi_j\}_{n+1}^{n+n_\partial}$ for S_E^h Finite element function is $u_h = \sum_j u_j \varphi_j$, problem

becomes: $find\{u_j\}$ such that

$$\sum_{j} a(\varphi_{j}, \varphi_{i}) \mathbf{u}_{j} = l(\varphi_{j}), \quad i = 1, 2, ..., n$$

$$or \ a_{sd}$$

Leads to matrix equation Fu=f,

$$F = \varepsilon A + N (+ S)$$

Matrix Properties

Matrix equation Fu=f, $F=\varepsilon A+N$ (+ S)

$$A=[a_{ij}], \quad a_{ij}=\int_{\Omega} \nabla \phi_{j} \cdot \nabla \phi_{i}, \quad discrete \ Laplacian, \\ symmetric \ positive-definite$$

$$N=[n_{ij}], \quad n_{ij}=\int_{\Omega} (w \cdot \nabla \phi_j) \phi_i$$
, discrete convection operator, skew-symmetric $(N=-N^T)$

$$S=[s_{ij}], \quad s_{ij}=\int_{\Omega} (w\cdot \nabla \phi_j)(w\cdot \nabla \phi_i), \quad discrete \ streamline \ upwinding \ operator, \ positive \ semi-definite$$

End of Part I

Next: how to solve Fu=f?

Iterative Solution Algorithms: Krylov Subspace Methods

System Fu=f

- *F* is a nonsymmetric matrix, so an appropriate Krylov subspace method is needed
- Examples:
 - GMRES
 - GMRES(k) restarted
 - BiCGSTAB
 - BiCGSTAB(*l*)
- Our choices:
 - Full GMRES for optimal algorithm, or
 - BiCGSTAB(2) for suboptimal

Properties of Krylov Subspace Methods

Drawback of GMRES: work & storage requirements at step k are proportional to kN

BiCGSTAB: Fixed cost per step, independent of *k*

Drawback: No convergence analysis

Variant: BiCGSTAB(l), more robust for complex eigenvalues, somewhat higher cost per step (l=2), but still fixed

Convergence of GMRES

GMRES: Starting with \mathbf{u}_0 , with residual $\mathbf{r}_0 = \mathbf{f} - \mathbf{F} \mathbf{u}_0$, computes $\mathbf{u}_k \in span\{\mathbf{r}_0, \mathbf{F}\mathbf{r}_0, \dots, \mathbf{F}^{k-1}\mathbf{r}_0\}$

for which $r_k = \mathbf{f} - F \mathbf{u}_k$ satisfies

$$\|\mathbf{r}_k\| = \min_{\mathbf{p}_k(0)=1} \|\mathbf{p}_k(\mathbf{F})\mathbf{r}_0\|.$$

Consequence:

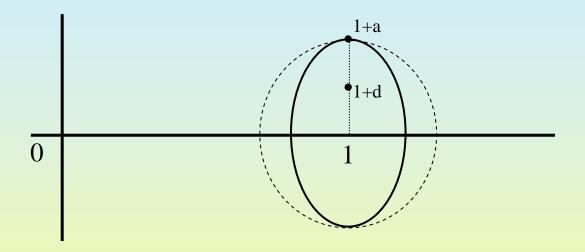
Theorem: For diagonalizable $F=V\Lambda V^{-1}$,

$$\begin{aligned} ||\mathbf{r}_{k}|| &\leq ||\mathbf{V}|| \; ||\mathbf{V}^{-1}|| \; \min_{\mathbf{p}_{k}(0)=1} \; \max_{\lambda \in \sigma(\mathbf{F})} |\mathbf{p}_{k}(\lambda)| \; ||\mathbf{r}_{0}||. \\ &(||\mathbf{r}_{k}||/||\mathbf{r}_{0}||)^{1/k} \leq (||\mathbf{V}|| \; ||\mathbf{V}^{-1}||)^{1/k} \underbrace{(\min_{\mathbf{p}_{k}(0)=1} \max_{\lambda \in \sigma(\mathbf{F})} |\mathbf{p}_{k}(\lambda)|)^{1/k}}_{\hat{O}} \end{aligned}$$

Loosely speaking: residual is reduced by factor of $\hat{\rho}$ at each step Want eigenvalues to lie in compact set

Convergence of GMRES

Size of convergence factor $\hat{\rho}$



$$\hat{\rho} \approx \frac{a + \sqrt{a^2 - d^2}}{1 + \sqrt{1 - d^2}} \le a = \rho(Q_F^{-1} R_F)$$

Key for Fast Convergence: Preconditioning Splitting operators

Seek $Q_F \approx F$ such that

- the approximation is good, and
- it is inexpensive to apply the action of Q^{-1} to a vector

Splitting:
$$F = Q_F - R_F \longrightarrow \text{stationary iteration } u_{k+1} = Q_F^{-1}(R_F u_k + f)$$

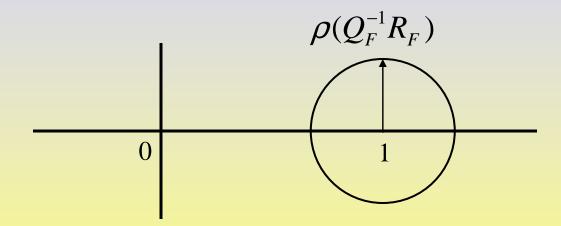
Error $e_k = u - u_k$ satisfies

$$\begin{aligned} u - u_{k+1} &= Q_F^{-1} R_F (u - u_k) = (I - Q_F^{-1} F)(u - u_k) \Rightarrow \\ e_k &= (I - Q_F^{-1} F)^k e_0 \\ \left\| e_k \right\| &\leq \left\| (I - Q_F^{-1} F)^k \right\| \left\| e_0 \right\| \\ \left(\left\| e_k \right\| / \left\| e_0 \right\| \right)^{1/k} &\leq \left\| (I - Q_F^{-1} F)^k \right\|^{1/k} \approx \rho (I - Q_F^{-1} F) \end{aligned}$$

Preconditioning / Splitting operators

Thus: want $\rho(I - Q_F^{-1}F)$ to be as small as possible

Equivalently: eigenvalues of $Q_F^{-1}F$ = eigenvalues of FQ_F^{-1} as close to 1 as possible



This is similar to the requirement for rapid convergence of GMRES

Solve
$$Q_F^{-1}Fu = Q_F^{-1}f$$
 or $FQ_F^{-1}\hat{u} = f$, $u = Q_F^{-1}\hat{u}$

Examples of splitting operators

Gauss-Seidel

Line Gauss-Seidel

Symmetric versions

Incomplete LU factorization

 Q_F = lower triangle of A

 Q_F = block lower triangle of A

 $Q_F = L_F U_F$

 $F \approx LU = Q_F$

Comments:

- All depend on ordering of underlying grid
- Symmetric versions (symmetric GS, ILU) take some account of underlying flow
- Line/block versions can handle irregular grids

Convergence Analysis (Parter & Steuerwalt)

Seek maximal eigenvalue of $Q_F^{-1}R_Fu = \lambda u$ or $\lambda Q_Fu = R_Fu$

Subtract $\lambda R_F u$ from both sides \longrightarrow

$$(Q_F - R_F)u = \left(\frac{1 - \lambda}{\lambda}\right)R_F u = \left(\frac{1 - \lambda}{\lambda h^2}\right)(h^2 R_F)u$$

$$Fu = \mu_h(h^2 R_F)u$$
(1)

Suggests relation to
$$\mathcal{L} u = \mu \mathcal{R} u$$
 (2)
$$\mathcal{L} u = -\varepsilon \nabla^2 u + w \cdot \nabla u$$
 \mathcal{R} to be determined

For many examples of splittings:

$$h^2(R_F u, v) \approx (r u_h, v_h), \quad r = r(x) \text{ (defines } \mathcal{R})$$

 $h^2 R_F \text{ is a "weak multiplication operator"}$

and

$$\mu_h \to \mu^{(0)} = \text{minimal eigenvalue of } (2)$$

Consequence:

$$\rho(Q_F^{-1}R_F) = 1 - \mu^{(0)}h^2$$

For model problems:

- (i) r is constant (will demonstrate in a moment)
- (ii) on square domains, eigenvalues, eigenvectors of

$$\mathcal{L}u = \mu \mathcal{R} u$$

are known:

$$u^{(j,k)} = e^{w_1 x/2} \sin(j\pi x) e^{w_2 y/2} \sin(k\pi y)$$

$$\mu_{jk} = \frac{\mathcal{E}}{r} \left((j^2 + k^2) \pi^2 + \left(\frac{w_x}{2\mathcal{E}} \right)^2 + \left(\frac{w_y}{2\mathcal{E}} \right)^2 \right)$$

$$\Rightarrow \mu^{(0)} = \frac{\mathcal{E}}{r} \left(2\pi^2 + \left(\frac{w_x}{2\mathcal{E}} \right)^2 + \left(\frac{w_y}{2\mathcal{E}} \right)^2 \right)$$

To find r: consider centered finite differences

$$-\left(\varepsilon - \frac{w_{y}h}{2}\right)$$

$$-\left(\varepsilon + \frac{w_{x}h}{2}\right) - \left(\varepsilon - \frac{w_{x}h}{2}\right)$$

$$-\left(\varepsilon + \frac{w_{y}h}{2}\right)$$

For horizontal line Jacobi splitting, Q_F = block tridiagonal:

$$[R_F u]_{ij} = \left(\varepsilon - \frac{w_y h}{2}\right) u_{i,j+1} + \left(\varepsilon + \frac{w_y h}{2}\right) u_{i,j-1} = 2\varepsilon u_{ij} + O(h^2)$$

$$\Rightarrow r = 2\varepsilon, \quad \rho = 1 - \frac{1}{2} \left(2\pi^2 + \left(\frac{w_x}{2\varepsilon} \right)^2 + \left(\frac{w_y}{2\varepsilon} \right)^2 \right) h^2$$

Key point: convection terms lead to smaller convergence factors

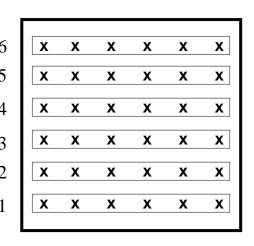
Comments / Extensions

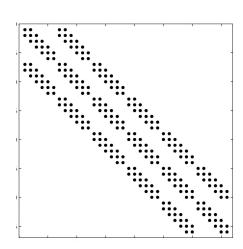
- Similar results obtained from matrix/Fourier analysis
- Young: ρ (line Gauss Seidel operator) = ρ (line Jacobi operator)²
- "Multi-line" (k-line) splittings \longrightarrow $r = 2\varepsilon/k$
- Can extend to other splittings via matrix comparison theorems (Varga-Woźnicki): $Q_2^{-1} \ge Q_1^{-1} \Rightarrow \rho(Q_2^{-1}R_2) \le \rho(Q_1^{-1}R_1)$

Limitations of analysis above: It does not discriminate

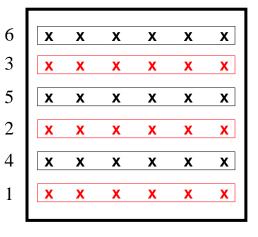
It does not discriminate among different orderings

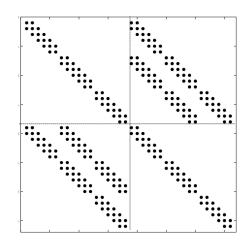
Natural ordering of grid 6 Left-to-right, bottom-to-top 5 Plus resulting matrix structure: 4





Horizontal line red-black Ordering and matrix structure:





Young theory: spectral radii (Jacobi or Gauss-Seidel)

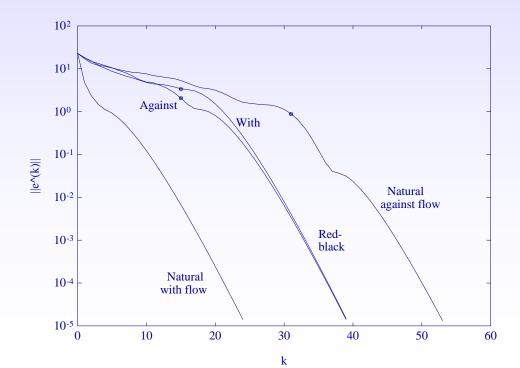
independent of ordering

Performance of GS: depends on ordering

Example: Problem 1

$$-\varepsilon \nabla^2 u + u_y = f$$
 (0,1)², piecewise linear elements, P = 60

Four solution strategies: line Gauss-Seidel iteration with natural line ordering, following the flow (bottom-to-top) natural line ordering, against the flow (top-to-bottom) red-black line ordering, with the flow red-black line ordering, against the flow



Ordering effects

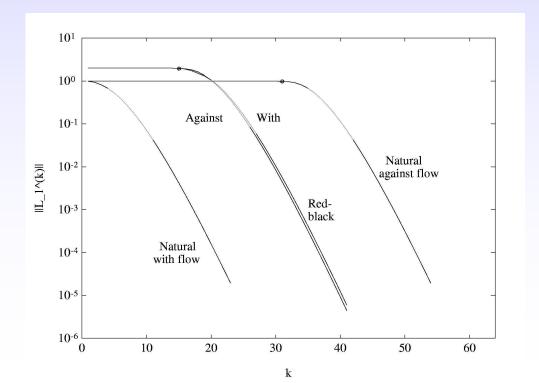
Error
$$e_k = u - u_k$$
 satisfies $e_k = (Q_F^{-1} R_F)^k e_0 \Rightarrow$

$$\Rightarrow ||e_k|| = ||(Q_F^{-1} R_F)^k e_0|| \leq ||(Q_F^{-1} R_F)^k|| ||e_0||$$

"Classical" analysis only provides insight in asymptotic sense:

$$\lim_{k \to \infty} \frac{\left\| (Q_F^{-1} R_F)^k \right\|^{1/k}}{\rho} = 1$$

E. & Chernesky:
bounds for $\|(Q_F^{-1}R_F)^k\|$ for 1D problems



Practical consequences

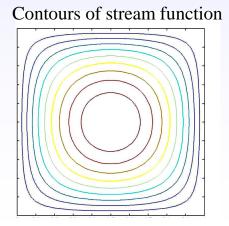
For *nonconstant* flows: inherent latencies if sweeps don't follow flow Possible fixes:

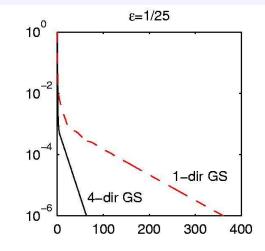
- flow-directed orderings (Bey & Wittum, Kellogg, Hackbusch, Xu)
- iterations based on multi-directional sweeps

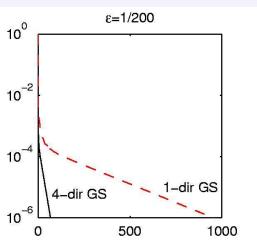
2D version:
$$u_{k+1/4} = u_k + Q_1^{-1}(f - Fu_k)$$

 $u_{k+1/2} = u_{k+1/4} + Q_2^{-1}(f - Fu_{k+1/4})$
 $u_{k+3/4} = u_{k+1/2} + Q_3^{-1}(f - Fu_{k+1/2})$
 $u_{k+1} = u_{k+3/4} + Q_4^{-1}(f - Fu_{k+3/4})$

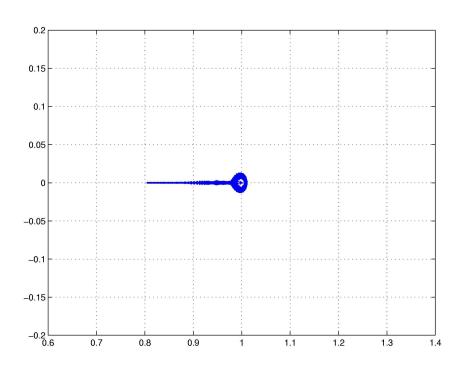
Speeds convergence when recirculations are present

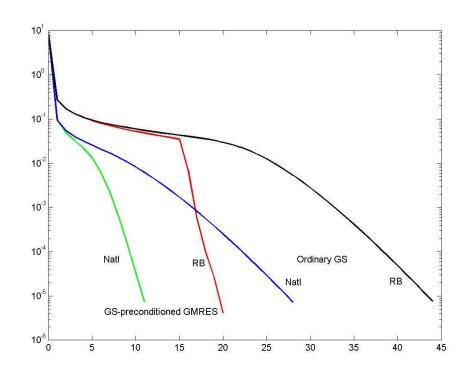






Summarizing with an experiment:





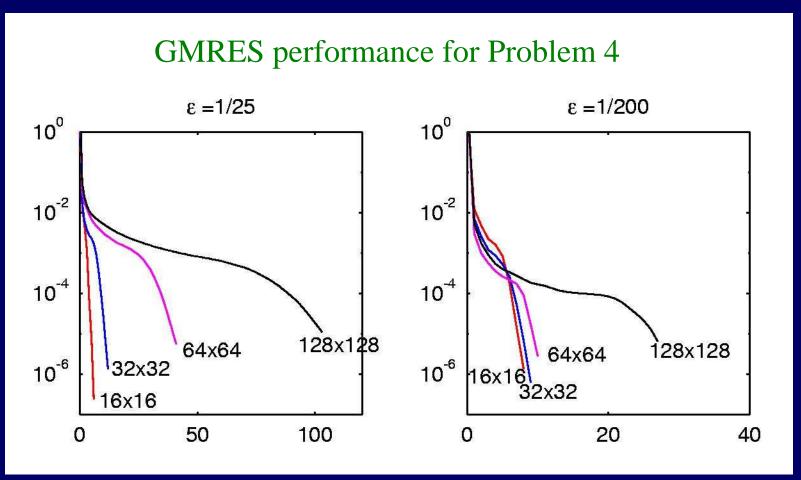
Eigenvalues of line-GS preconditioned operator, vertical flow, P=40, h=1/32

Asymptotic convergence rate is faster with Krylov acceleration

However: does not overcome latencies

Multigrid

Flow-following methods are effective for convection-dominated problems:



But: ultimately, solvers discussed above are mesh dependent

Multigrid

V-cycle multigrid:

```
Choose u_0
for i = 0 until convergence
    for k steps, u_i \leftarrow (I - Q_F^{-1}F)u_i + Q_F^{-1}f (presmooth)
   \hat{\mathbf{r}} = P^{\mathrm{T}}(f - Fu_i) (restrict residual)
    apply multigrid system to coarse problem F^{2h}\hat{e} = \hat{r}
    u_i \leftarrow u_i + P\hat{e} (prolong correction and update)
    for m steps, u_i \leftarrow (I - Q_F^{-1}F)u_i + Q_F^{-1}f (postsmooth)
    u_{i+1} \leftarrow u_i (update for next iteration)
end
```

Bottom Line: Performance

Multigrid iterations for $||\mathbf{r}_{\mathbf{k}}||/||\mathbf{r}_{\mathbf{0}}|| < 10^{-6}$

	ε=1/25				ε=1/200			
	Example				Example			
Grid	1	2	3	4	1	2	3	4
16× 16	4	3	3	3	3	3	6	6
32×32	3	3	4	2	3	3	4	5
64×64	3	3	4	2	3	3	3	3
128× 128	3	3	5	2	3	3	3	2

For this to happen:

Two things have to be done correctly

1. Smoothing:
$$u_i \leftarrow (I - Q_F^{-1}F)u_i + Q_F^{-1}f$$

Smoother must take underlying flow into account

For results above for Problem 4 (recirculating wind): smoother is *4-directional*

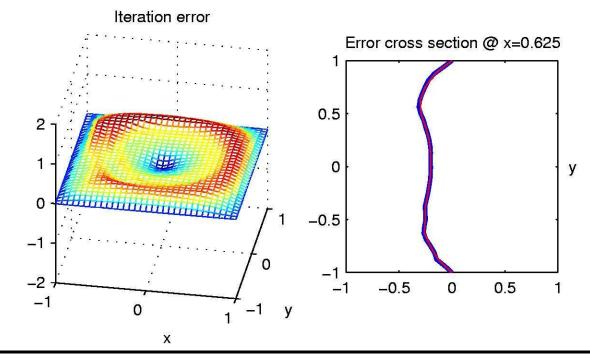
2. Coarse grid solve : $F^{2h}\hat{e} = \hat{r}$

Coarse grid operator must be stable

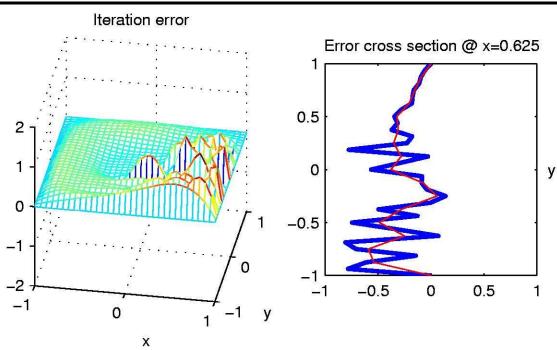
Even if fine grid is "fine enough," coarse grid operators should include streamline diffusion

Example / effect of smoother

After one four-directional Gauss-Seidel step



After four one-directional Gauss-Seidel steps



Concluding Remarks

- Discretization requires stabilization for convection-dominated problems
- The best solution algorithms combine
 - general techniques of iterative methods
 - splitting strategies coupled to the underlying physics
 - stabilization when needed

References

- J. J. H. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singularly Perturbed Problems, World Scientific, 1995.
- K. W. Morton, *Numerical Solution of Convection-Diffusion Problems*, Chapman & Hall, 1996.
- H.-G. Roos, M. Stynes and L. Tobiska, *Numerical Methods* for Singularly Perturbed Differential Equations, Springer, 1996.
- H. C. Elman, D. J. Silvester and A. J. Wathen, *Finite Elements and Fast Iterative Solvers*, Oxford University Press, 2005.