MATH 589 001 Advanced Probability Theory II Winter Term 2006 Homework 3

Due: Monday, February 27, 2006, 5pm, in Room 1123.

Cite all books you consult other than the course books and list all people you discuss your work with.

- 1. (Billingsley 27.12) There can be assymptotic normality even if there are no moments at all. Construct a simple example.
- 2. (Durrett)
 - (a) Let ϕ be the ch.f. of a distribution F on \mathbb{R} . What is the distribution on \mathbb{R}^k that corresponds to the ch.f. $\psi(t_1,\ldots,t_k)=\phi(t_1+\cdots+t_k)$?
 - (b) Show that the random variables X_1, \ldots, X_k are independent if and only if

$$\phi_{X_1,...,X_k}(t) = \prod_{j=1}^k \phi_{X_j}(t_j).$$

- 3. Let Y_n , $n \ge 1$ be a sequence of random variables with $\mathbb{E}Y_n = 0$, $\mathbb{E}Y_n^2 = 1$. Let $X_{n,m}$, $n \ge 1$, $1 \le m \le n$, be a triangular array of independent random variables where $X_{n,m}$ is distributed as Y_n/\sqrt{n} . Consider applying the Lindeberg-Feller Central Limit Theorem to this array.
 - (a) What does the Lindeberg-Feller condition reduce to in this case?
 - (b) What does the Lyapunov condition reduce to in this case?
 - (c) Give an example of a sequence Y_n for which the Lindeberg-Feller condition does not hold.
 - (d) Give an example of a sequence Y_n for which the Lyapunov condition does not hold but the Lindeberg-Feller condition does.

Hint: I was able to construct Y_n for each of (c) and (d) that consisted of three atoms for each n.

- 4. Prove the following multivariate version of the Lindeberg-Feller Theorem using the one-dimensional LFT and the Cramér-Wold device. For each n, let $X_{n,m}$, $1 \le m \le n$, be independent random vectors with $\mathbb{E}X_{n,m} = 0$. Suppose
 - (i) $\sum_{m=1}^{n} \mathbb{E} X_{n,m} X_{n,m}^T \to \Gamma \in \mathbb{R}^{k \times k}$
 - (ii) For all $\epsilon > 0$, $\lim_{n \to \infty} \sum_{m=1}^{n} \mathbb{E}(\|X_{n,m}\|^{2} 1_{\|X_{n,m}\| > \epsilon}) = 0$

Here $\|\cdot\|$ denotes the usual 2-norm on \mathbb{R}^k .

5. Let $U_n, n \ge 1$ be an i.i.d. sequence of random variables uniformly distributed on [-1, 1]. What is the assymptotic distribution of

$$M_n = n^{1/2} \operatorname{median}_{i=1,\dots,2n+1} U_i.$$

Use the usual Central Limit Theorem and the following identity for medians:

$$\{M_n \le x\} = \{\sum_{i=1}^{2n+1} \mathbf{1}_{n^{1/2}X_i \le x} \ge n+1\}.$$

- 6. (Rosenthal)
 - (a) Suppose X and Y are discrete random variables. Let p(x,y) = P(X=x,Y=y). Show that we can set

$$\mathbb{E}(Y|X) = \frac{\sum_{y} yp(X,y)}{\sum_{y} p(X,y)}.$$

(b) Let \mathcal{G} be a sub- σ -algebra, and let X and Y be two *independent* random variables. Prove by example that $\mathbb{E}(X|\mathcal{G})$ and $\mathbb{E}(Y|\mathcal{G})$ need not be independent.