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What role have theoretical methods initially developed in mathematics and physics played in the progress of financial economics?
What is the relationship between financial economics and econophysics? What is the relevance of the “classical ergodicity
hypothesis” tomodernportfolio theory?This paper addresses these questions by reviewing the etymology andhistory of the classical
ergodicity hypothesis in 19th century statistical mechanics. An explanation of classical ergodicity is provided that establishes a
connection to the fundamental empirical problem of using nonexperimental data to verify theoretical propositions in modern
portfolio theory.The role of the ergodicity assumption in the ex post/ex ante quandary confronting modern portfolio theory is also
examined.

“As the physicist builds models of the movement of matter in a frictionless environment, the economist builds models where
there are no institutional frictions to the movement of stock prices.”

E. Elton and M. Gruber, Modern Portfolio Theory and Investment Analysis (1984, p. 273)

1. Introduction

At least since Markowitz [1] initiated modern portfolio
theory (MPT), it has often been maintained that the tradeoff
between systematic risk and expected return is the most
important theoretical element of financial economics, for
example, Campbell [2]. Extending Mirowski [3], the static
equilibrium methods used to develop propositions in MPT
such as the capital asset pricing model can be traced to
mathematical concepts developed from the deterministic
“rational mechanics” approach to 19th century physics. In
the years since Markowitz [1], financial economics has also
adopted alternative mathematical methods frommore recent
contributions to physics, especially the diffusion processes
employed by Black and Scholes [4] to determine option
prices.The emergence of econophysics during the last decade
of the twentieth century, for example, Roehner [5] and
Jovanovic and Schinckus [6], has provided a variety of
theoretical and empirical methods adapted from physics,
ranging from statistical mechanics to chaos theory, to analyze
financial phenomena. Yet, despite considerable overlap in
method, contributions to econophysics have gained limited

attention in financial economics. In contrast, econophysi-
cists generally consider financial economics to be primarily
concerned with a core theory that is inconsistent with the
empirical orientation of physical theory.

Physical theory has evolved considerably from the con-
strained optimization, static equilibrium approach of rational
mechanics which underpins MPT. In detailing historical
developments in physics since the 19th century, it is conven-
tional to jump from the determinism of rational mechanics
to quantum mechanics to recent developments in chaos
theory, overlooking the relevance of the initial steps toward
modeling stochastic behavior of physical phenomena by
Ludwig Boltzmann (1844–1906), James Maxwell (1831–1879),
and Josiah Gibbs (1839–1903). As such, there is a point of
demarcation between the intellectual prehistories of MPT
and econophysics that can, arguably, be traced to the debate
over energistics around the end of the 19th century.While the
evolution of physics after energistics involved the introduc-
tion and subsequent stochastic generalization of ergodic con-
cepts, fueled by the emergence of MPT following Markowitz,
financial economics incorporated ergodicity into empirical
methods aimed at generalizing and testing the capital asset
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pricing model and other elements of MPT.1 Significantly,
stochastic generalization of the static equilibrium approach
of MPT required the adoption of a restricted class of ergodic
processes, that is, “time reversible” probabilistic models,
especially the unimodal likelihood functions associated with
certain stationary distributions.

In contrast, from the early ergodic models of Boltzmann
to the fractals and chaos theory of Mandlebrot, physics
has employed a wider variety of ergodic and nonergodic
stochastic models aimed at capturing key empirical charac-
teristics of various physical problems at hand. Such models
typically have a mathematical structure that varies from
the constrained optimization techniques underpinningMPT,
restricting the straightforward application of many physical
models. Yet, the demarcation between the use of ergodic
notions in physics and financial economics was blurred sub-
stantively by the introduction of diffusion process techniques
to solve contingent claims valuation problems. Following
contributions by Sprenkle [7] and Samuelson [8], Black
and Scholes [4] and Merton [9] provided an empirically
viable method of using diffusion methods to determine,
using Ito’s lemma, a partial differential equation that can
be solved for an option price. Use of Ito’s lemma to solve
stochastic optimization problems is now commonplace in
financial economics, for example, Brennan and Schwartz [10],
including the continuous time generalizations of MPT, for
example, Epstein and Ji [11]. In spite of the considerable
progression of certain mathematical techniques employed in
physics into financial economics, overcoming the difficulties
of applying the wide range of models developed for physical
situations to fit the empirical properties of financial data is
still a central problem confronting econophysics.

Schinckus [12, p. 3816] accurately recognizes that the
positivist philosophical foundation of econophysics depends
fundamentally on empirical observation: “The empiricist
dimension is probably the first positivist feature of econo-
physics.” Following McCauley [13] and others, this con-
cern with empiricism often focuses on the identification of
macrolevel statistical regularities that are characterized by
the scaling laws identified by Mandelbrot [14] and Man-
dlebrot and Hudson [15] for financial data. Unfortunately,
this empirically driven ideal is often confounded by the
“nonrepeatable” experiment that characterizesmost observed
economic and financial data. There is quandary posed by
having only a single observed ex post time path to estimate
the distributional parameters for the ensemble of ex ante
time paths needed to make decisions involving future values
of financial variables. In contrast to natural sciences, such
as physics, in the human sciences there is no assurance
that ex post statistical regularity translates into ex ante fore-
casting accuracy. Resolution of this quandary highlights the
usefulness of employing a “phenomenological” approach to
modeling stochastic properties of financial variables relevant
to MPT.

To this end, this paper provides an etymology and
history of the “classical ergodicity hypothesis” in 19th cen-
tury statistical mechanics. Subsequent use of ergodicity in
financial economics, in general, and MPT, in particular,
is then examined. A modern interpretation of classical

ergodicity is provided that uses Sturm-Liouville theory, a
mathematical method central to classical statistical mechan-
ics, to decompose the transition probability density of a
one-dimensional diffusion process subject to regular upper
and lower reflecting barriers. This “classical” decomposition
divides the transition density of an ergodic process into
a possibly multimodal limiting stationary density which
is independent of time and initial condition and a power
series of time and boundary dependent transient terms. In
contrast, empirical theory aimed at estimating relationships
from MPT typically ignores the implications of the initial
and boundary conditions that generate transient terms and
focuses on properties of a particular class of unimodal lim-
iting stationary densities with finite parameters. To illustrate
the implications of the expanded class of ergodic processes
available to econophysics, properties of the bimodal quartic
exponential stationary density are considered and used to
assess the ability of the classical ergodicity hypothesis to
explain certain “stylized facts” associated with the ex post/ex
ante quandary confronting MPT.

2. A Brief History of Classical Ergodicity

The Encyclopedia of Mathematics [16] defines ergodic theory
as the “metric theory of dynamical systems, the branch of
the theory of dynamical systems that studies systems with
an invariant measure and related problems.” This modern
definition implicitly identifies the birth of ergodic theory
with proofs of the mean ergodic theorem by von Neumann
[17] and the pointwise ergodic theorem by Birkhoff [18].
These early proofs have had significant impact in a wide
range of modern subjects. For example, the notions of
invariant measure and metric transitivity used in the proofs
are fundamental to the measure theoretic foundation of
modern probability theory [19, 20]. Building on a seminal
contribution to probability theory by Kolmogorov [21], in
the years immediately following it was recognized that the
ergodic theorems generalize the strong law of large numbers.
Similarly, the equality of ensemble and time averages—the
essence of the mean ergodic theorem—is necessary to the
concept of a strictly stationary stochastic process. Ergodic
theory is the basis for themodern study of randomdynamical
systems, for example, Arnold [22]. In mathematics, ergodic
theory connects measure theory with the theory of transfor-
mation groups. This connection is important in motivating
the generalization of harmonic analysis from the real line to
locally compact groups.

From the perspective of modern mathematics, statistical
physics, or systems theory, Birkhoff [18] and von Neumann
[17] are excellent starting points for a modern history of
ergodic theory. Building on the modern ergodic theorems,
subsequent developments in these and related fields have
been dramatic. These contributions mark the solution to a
problem in statistical mechanics and thermodynamics that
was recognized sixty years earlier when Ludwig Boltzmann
introduced the classical ergodic hypothesis to permit the the-
oretical phase space average to be interchanged with themea-
surable time average. For the purpose of contrastingmethods
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from physics and econophysics with those used in MPT, the
selection of the less formally correct and rigorous classical
ergodic hypothesis of Boltzmann is a more auspicious begin-
ning. Problems of interest in mathematics are generated by a
range of subjects, such as physics, chemistry, engineering, and
biology. The formulation and solution of physical problems
in, say, statistical mechanics or particle physics will have
mathematical features which are inapplicable or unnecessary
for MPT. For example, in statistical mechanics, points in the
phase space are often multidimensional functions represent-
ing the mechanical state of the system; hence the desirability
of a group-theoretic interpretation of the ergodic hypothesis.
From the perspective of MPT, such complications are largely
irrelevant. The history of classical ergodic theory captures
the etymology and basic physical interpretation providing a
more revealing prehistory of the relevant MPT mathematics.
This arguably more revealing prehistory begins with the
formulation of theoretical problems that von Neumann and
Birkhoff were later able to solve.

Mirowski [3] [23, esp. ch. 5] establishes the importance of
19th century physics in the development of the neoclassical
economic system advanced by W. Stanley Jevons (1835–
1882) and Leon Walras (1834–1910) during the marginalist
revolution of the 1870s. Being derived using principles from
neoclassical economic theory, MPT also inherited essential
features of mid-19th century physics: deterministic rational
mechanics; conservation of energy; and the nonatomistic
continuum view of matter that inspired the energetics
movement later in the 19th century.2 More precisely, from
neoclassical economicsMPT inherited a variety of static equi-
librium techniques and tools such as mean-variance utility
functions and constrained optimization. As such, failings
of neoclassical economics identified by econophysicists also
apply to central propositions of MPT. Included in the failings
is an overemphasis on theoretical results at the expense of
identifying models that have greater empirical validity, for
example, Roehner [5] and Schinckus [12].

It was during the transition from rational to statistical
mechanics during the last third of the 19th century that
Boltzmannmade contributions leading to the transformation
of theoretical physics from the microscopic mechanistic
models of Rudolf Clausius (1835–1882) and James Maxwell
to the macroscopic probabilistic theories of Josiah Gibbs and
Albert Einstein (1879–1955).3 Coming largely after the start
of the marginalist revolution in economics, this fundamental
transformation in theoretical physics had little impact on
the progression of financial economics until the appearance
of diffusion equations in contributions on continuous time
finance that started in the 1960s and culminated in Black and
Scholes [4]. The deterministic mechanics of the energistic
approach was well suited to the axiomatic formalization of
neoclassical economic theory which culminated in the fol-
lowing: the von Neumann and Morgenstern expected utility
approach to modeling uncertainty; the Bourbaki inspired
Arrow-Debreu general equilibrium theory, for example,
Weintraub [24], and, ultimately, MPT. In turn, empirical
estimation and the subsequent extension of static equilibrium
MPT results to continuous time were facilitated by the
adoption of a narrow class of ergodic processes.

Having descended from the deterministic rational
mechanics of mid-19th century physics, defining works of
MPT do not capture the probabilistic approach to modeling
systems initially introduced by Boltzmann and further
clarified by Gibbs.4 Mathematical problems raised by
Boltzmann were subsequently solved using tools introduced
in a string of later contributions by the likes of the Ehrenfests
and Cantor in set theory, Gibbs and Einstein in physics,
Lebesgue in measure theory, Kolmogorov in probability
theory, and Weiner and Levy in stochastic processes.
Boltzmann was primarily concerned with problems in the
kinetic theory of gases, formulating dynamic properties of
the stationary Maxwell distribution, the velocity distribution
of gas molecules in thermal equilibrium. Starting in 1871,
Boltzmann took this analysis one step further to determine
the evolution equation for the distribution function. The
mathematical implications of this classical analysis still
resonate in many subjects of the modern era. The etymology
for “ergodic” begins with an 1884 paper by Boltzmann,
though the initial insight to use probabilities to describe a gas
system can be found as early as 1857 in a paper by Clausius
and in the famous 1860 and 1867 papers by Maxwell.5

The Maxwell distribution is defined over the velocity of
gas molecules and provides the probability for the relative
number of molecules with velocities in a certain range.
Using a mechanical model that involved molecular collision,
Maxwell [25] was able to demonstrate that, in thermal
equilibrium, this distribution of molecular velocities was
a “stationary” distribution that would not change shape
due to ongoing molecular collision. Boltzmann aimed to
determine whether the Maxwell distribution would emerge
in the limit, whatever the initial state of the gas. In order to
study the dynamics of the equilibrium distribution over time,
Boltzmann introduced the probability distribution of the
relative time a gas molecule has a velocity in a certain range
while still retaining the notion of probability for velocities
of a relative number of gas molecules. Under the classical
ergodic hypothesis, the average behavior of the macroscopic
gas system, which can objectively be measured over time, can
be interchanged with the average value calculated from the
ensemble of unobservable and highly complex microscopic
molecular motions at a given point in time. In the words
of Weiner [26, p. 1] “Both in the older Maxwell theory and
in the later theory of Gibbs, it is necessary to make some
sort of logical transition between the average behavior of all
dynamical systems of a given family or ensemble, and the
historical average of a single system.”

3. Use of the Ergodic Hypothesis in
Financial Economics

At least since Samuelson [27], it has been recognized that
empirical theory and estimation in economics, in general,
and financial economics, in particular, relies heavily on the
use of specific unimodal stationary distributions associated
with a particular class of ergodic processes. As reflected in
the evolution of the concept in economics, the specification
and implications of ergodicity have only developed gradually.



4 Chinese Journal of Mathematics

The early presentation of ergodicity by Samuelson [27]
involves the addition of a discrete Markov error term into the
deterministic cobweb model to demonstrate that estimated
forecasts of future values, such as prices, “should be less
variable than the actual data.” Considerable opaqueness about
the definition of ergodicity is reflected in the statement that
a “‘stable’ stochastic process. . . eventually forgets its past and
therefore in the far future can be expected to approach an
ergodic probability distribution” [27, p. 2]. The connection
between ergodic processes and nonlinear dynamics that char-
acterizes present efforts in economics goes unrecognized,
for example, [27, p. 1, 5]. While some explicit applications
of ergodic processes to theoretical modeling in economics
have emerged since Samuelson [27], for example, Horst and
Wenzelburger [28] and Dixit and Pindyck [29], financial
econometrics has produced the bulk of the contributions.

Initial empirical estimation for the deterministic models
of neoclassical economics proceeded with the addition of a
stationary, usually Gaussian, error term to produce a discrete
time general linear model (GLM) leading to estimation using
ordinary least squares or maximum likelihood techniques. In
the history of MPT, such early estimations were associated
with tests of the capital asset pricing model such as the “mar-
ket model,” for example, Elton and Gruber [30]. Iterations
and extensions of the GLM to deal with complications arising
in empirical estimates dominated early work in economet-
rics, for example, Dhrymes [31] and Theil [32], leading to
application of generalized least squares estimation techniques
that encompassed autocorrelated and heteroskedastic error
terms. Employing 𝐿

2
vector space methods with stationary

Gaussian-based error term distributions ensured these early
stochastic models implicitly assumed ergodicity.The general-
ization of this discrete time estimation approach to the class of
ARCH andGARCH error termmodels by Engle andGranger
was of such significance that a Nobel prize in economics
was awarded for this contribution, for example, Engle and
Granger [33]. By modeling the evolution of the volatility, this
approach permitted a limited degree of nonlinearity to be
modeled providing a substantively better fit of MPT models
to observed financial time series, for example, Beaulieu et al.
[34].

The emergence of ARCH, GARCH, and related empirical
models was part of a general trend toward the use of inductive
methods in economics, often employing discrete, linear time
series methods tomodel transformed economic variables, for
example, Hendry [35]. At least since Dickey and Fuller [36],
it has been recognized that estimates of univariate time series
models for many financial times series reveals evidence of
“non-stationarity.” A number of approaches have emerged
to deal with this apparent empirical quandary.6 In particu-
lar, transformation techniques for time series models have
received considerable attention. Extension of the Box-Jenkins
methodology led to the concept of economic time series
being I(0)—stationary in the level—and I(1)—nonstationary
in the level but stationary after first differencing. Two I(1)
economic variables could be cointegrated if differencing the
two series produced an I(0) process, for example, Hendry
[35]. Extending early work on distributed lags, long memory

processes have also been employed where the time series is
only subject to fractional differencing. Significantly, recent
contributions on Markov switching processes and exponen-
tial smooth transition autoregressive processes have demon-
strated the “possibility that nonlinear ergodic processes can
be misinterpreted as unit root nonstationary processes” [37,
p. 620]. Bonomo et al. [38] illustrates the recent application
of Markov switching processes in estimating the asset pricing
models of MPT.

The conventional view of ergodicity in economics, in
general, and financial economics, in particular, is reflected by
Hendry [35, p. 100]: “Whether economic reality is an ergodic
process after suitable transformation is a deep issue” which
is difficult to analyze rigorously. As a consequence, in the
limited number of instances where ergodicity is examined
in economics a variety of different interpretations appear.
In contrast, the ergodic hypothesis in classical statistical
mechanics is associated with the more physically transparent
kinetic gas model than the often technical and targeted
concepts of ergodicity encountered in modern economics,
in general, and MPT, in particular. For Boltzmann, the
classical ergodic hypothesis permitted the unobserved com-
plex microscopic interactions of individual gas molecules
to obey the second law of thermodynamics, a concept that
has limited application in economics.7 Despite differences in
physical interpretation, there is similarity to the problem of
modeling “macroscopic” financial variables, such as common
stock prices, foreign exchange rates, “asset” prices, or interest
rates. By construction, when it is not possible to derive a
theory for describing and predicting empirical observations
from known first principles about the (microscopic) rational
behavior of individuals and firms. By construction, this
involves a phenomenological approach to modeling.8

Even though the formal solutions proposed were inad-
equate by standards of modern mathematics, the thermo-
dynamic model introduced by Boltzmann to explain the
dynamic properties of the Maxwell distribution is a peda-
gogically useful starting point to develop the implications
of ergodicity for MPT. To be sure, von Neumann [17] and
Birkhoff [18] correctly specify ergodicity using Lebesgue inte-
gration, an essential analytical tool unavailable to Boltzmann,
but the analysis is too complex to be of much value to all
but the most mathematically specialized economists. The
physical intuition of the kinetic gas model is lost in the
generality of the results. Using Boltzmann as a starting point,
the large number of mechanical and complex molecular
collisions could correspond to the large number of micro-
scopic, atomistic liquidity providers, and traders interacting
to determine the macroscopic financial market price. In this
context, it is variables such as the asset price or the interest
rate or the exchange rate, or some combination, that is
beingmeasured over time and ergodicity would be associated
with the properties of the transition density generating the
macroscopic variables. Ergodicity can fail for a number of
reasons and there is value in determining the source of the
failure. In this vein, there are two fundamental difficulties
associated with the classical ergodicity hypothesis in Boltz-
mann’s statistical mechanics, reversibility and recurrence,
that are largely unrecognized in financial economics.9
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Halmos [39, p. 1017] is a helpful starting point to sort
out the differing notions of ergodicity that are of relevance
to the issues at hand: “The ergodic theorem is a statement
about a space, a function and a transformation.” In mathe-
matical terms, ergodicity or “metric transitivity” is a property
of “indecomposable,” measure preserving transformations.
Because the transformation acts on points in the space, there
is a fundamental connection to the method of measuring
relationships such as distance or volume in the space. In von
Neumann [17] and Birkhoff [18], this is accomplished using
the notion of Lebesgue measure: the admissible functions
are either integrable (Birkhoff) or square integrable (von
Neumann). In contrast to, say, statistical mechanics where
spaces and functions account for the complex physical
interaction of large numbers of particles, economic theories
such as MPT usually specify the space in a mathematically
convenient fashion. For example, in the case where there is a
single random variable, then the space is “superfluous” [20,
p. 182] as the random variable is completely described by
the distribution. Multiple random variables can be handled
by assuming the random variables are discrete with finite
state spaces. In effect, conditions for an “invariant measure”
are assumed in MPT in order to focus attention on “finding
and studying the invariant measures” [22, p. 22], where
in the terminology of financial econometrics, the invariant
measure usually corresponds to the stationary distribution or
likelihood function.

The mean ergodic theorem of von Neumann [17] pro-
vides an essential connection to the ergodicity hypothesis
in financial econometrics. It is well known that, in the
Hilbert and Banach spaces common to econometric work,
the mean ergodic theorem corresponds to the strong law
of large numbers. In statistical applications where strictly
stationary distributions are assumed, the relevant ergodic
transformation, 𝐿∗, is the unit shift operator: 𝐿∗Ψ[𝑥(𝑡)] =

Ψ[𝐿

∗
𝑥(𝑡)] = Ψ[𝑥(𝑡 + 1)]; [(𝐿∗)𝑘]Ψ[𝑥(𝑡)] = Ψ[𝑥(𝑡 +

𝑘)]; and {(𝐿

∗
)

−𝑘
}Ψ[𝑥(𝑡)] = Ψ[𝑥(𝑡 − 𝑘)] with 𝑘 being an

integer and Ψ[𝑥] the strictly stationary distribution for 𝑥
that in the strictly stationary case is replicated at each 𝑡.10
Significantly, this reversible transformation is independent
of initial time and state. Because this transformation can
be achieved by imposing strict stationarity on Ψ[𝑥], 𝐿∗ will
only work for certain ergodic processes. In effect, the ergodic
requirement that the transformation is measure preserving is
weaker than the strict stationarity of the stochastic process
sufficient to achieve 𝐿∗. The practical implications of the
reversible ergodic transformation 𝐿∗ are described by David-
son [40, p. 331]: “In an economic world governed entirely by
[time reversible] ergodic processes. . . economic relationships
among variables are timeless, or ahistoric in the sense that the
future is merely a statistical reflection of the past [sic].”11

Employing conventional econometrics in empirical stud-
ies, MPT requires that the real world distribution for 𝑥(𝑡), for
example, the asset return, is sufficiently similar to those for
both 𝑥(𝑡 + 𝑘) and 𝑥(𝑡 − 𝑘); that is, the ergodic transformation
𝐿

∗ is reversible. The reversibility assumption is systemic in
MPT appearing in the use of long estimation periods to deter-
mine important variables such as the “equity risk premium.”

There is a persistent belief that increasing the length or
sampling frequency of a financial time series will improve
the precision of a statistical estimate, for example, Dimson
et al. [41]. Similarly, focus on the tradeoff between “risk and
return” requires the use of unimodal stationary densities for
transformed financial variables such as the rate of return.
The impact of initial and boundary conditions on financial
decision making is generally ignored. The inconsistency of
reversible processes with key empirical facts, such as the
asymmetric tendency for downdrafts in prices to be more
severe than upswings, is ignored in favor of adhering to
“reversible” theoretical models that can be derived from first
principles associated with constrained optimization tech-
niques, for example, Constantinides [42].

4. A Phenomenological Interpretation of
Classical Ergodicity

In physics, phenomenology lies at the intersection of theory
and experiment. Theoretical relationships between empiri-
cal observations are modeled without deriving the theory
directly from first principles, for example, Newton’s laws of
motion. Predictions based on these theoretical relationships
are obtained and compared to further experimental data
designed to test the predictions. In this fashion, new theories
that can be derived from first principles are motivated. Con-
fronted with nonexperimental data for important financial
variables, such as common stock prices, interest rates, and
the like, financial economics has developed some theoretical
models that aim to fit the “stylized facts” of those variables.
In contrast, the MPT is initially derived directly from the
“first principles” of constrained expected utility maximizing
behavior by individuals and firms. Given the difficulties in
economics of testing model predictions with “new” experi-
mental data, physics and econophysics have the potential to
provide a rich variety of mathematical techniques that can
be adapted to determiningmathematical relationships among
financial variables that explain the “stylized facts” of observed
nonexperimental data.12

The evolution of financial economics from the deter-
ministic models of neoclassical economics to more modern
stochastic models has been incremental and disjointed. The
preference for linear models of static equilibrium relation-
ships has restricted the application of theoretical frameworks
that capture more complex nonlinear dynamics, for exam-
ple, chaos theory; truncated Levy processes. Yet, important
financial variables have relatively innocuous sample paths
compared to some types of variables encountered in physics.
There is an impressive range of mathematical and statistical
models that, seemingly, could be applied to almost any physi-
cal or financial situation. If the process can be verbalized, then
a model can be specified. This begs the following questions:
are there transformations, ergodic or otherwise, that capture
the basic “stylized facts” of observed financial data? Is the
random instability in the observed sample paths identified
in, say, stock price time series consistent with the ex ante
stochastic bifurcation of an ergodic process, for example,
Chiarella et al. [43]? In the bifurcation case, the associated
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ex ante stationary densities are bimodal and irreversible, a
situation where the mean calculated from past values of a
single, nonexperimental ex post realization of the process is
not necessarily informative about the mean for future values.

Boltzmann was concerned with demonstrating that the
Maxwell distribution emerged in the limit as 𝑡 → ∞ for
systems with large numbers of particles. The limiting process
for 𝑡 requires that the system run long enough that the
initial conditions do not impact the stationary distribution.
At the time, two fundamental criticisms were aimed at this
general approach: reversibility and recurrence. In the context
of financial time series, reversibility relates to the use of past
values of the process to forecast future values. Recurrence
relates to the properties of the long run average which
involves the ability and length of time for an ergodic process
to return to its stationary state. For Boltzmann, both these
criticisms have roots in the difficulty of reconciling the second
law of thermodynamics with the ergodicity hypothesis. Using
Sturm-Liouville methods, it can be shown that classical
ergodicity requires the transition density of the process to
be decomposable into the sum of a stationary density and
a mean zero transient term that captures the impact of the
initial condition of the system on the individual sample paths;
irreversibility relates to properties of the stationary density
and nonrecurrence to the behavior of the transient term.

Because the particlemovements in a kinetic gasmodel are
contained within an enclosed system, for example, a vertical
glass tube, classical Sturm-Liouville (S-L) methods can be
applied to obtain solutions for the transition densities. These
classical results for the distributional implications of impos-
ing regular reflecting boundaries on diffusion processes are
representative of the modern phenomenological approach to
random systems theory which “studies qualitative changes of
the densites [sic] of invariant measures of the Markov semi-
group generated by random dynamical systems induced by
stochastic differential equations” [44, p. 27].13 Because the ini-
tial condition of the system is explicitly recognized, ergodicity
in these models takes a different form than that associated
with the unit shift transformation of unimodal stationary
densities typically adopted in financial economics, in general,
and MPT, in particular. The ergodic transition densities are
derived as solutions to the forward differential equation
associated with one-dimensional diffusions. The transition
densities contain a transient term that is dependent on the
initial condition of the system and boundaries imposed on
the state space. Path dependence, that is, irreversibility, can
be introduced by employingmultimodal stationary densities.

The distributional implications of boundary restrictions,
derived by modeling the random variable as a diffusion
process subject to reflecting barriers, have been studied for
many years, for example, Feller [45]. The diffusion process
framework is useful because it imposes a functional structure
that is sufficient for known partial differential equation
(PDE) solution procedures to be used to derive the relevant
transition probability densities.Wong [46] demonstrated that
with appropriate specification of parameters in the PDE, the
transition densities for popular stationary distributions such
as the exponential, uniform, and normal distributions can
be derived using classical S-L methods. The S-L framework

provides sufficient generality to resolve certain empirical
difficulties arising from key stylized facts observed in the
nonexperimental time series from financial economics. More
generally, the framework suggests a method of allowing
MPT to encompass the nonlinear dynamics of diffusion pro-
cesses. In other words, within the more formal mathematical
framework of classical statistical mechanics, it is possible
to reformulate the classical ergodicity hypothesis to permit
a useful stochastic generalization of theories in financial
economics such as MPT.

The use of the diffusion model to represent the nonlinear
dynamics of stochastic processes is found in a wide range
of subjects. Physical restrictions such as the rate of observed
genetic mutation in biology or character of heat diffusion in
engineering or physics often determine the specific formal-
ization of the diffusion model. Because physical interactions
can be complex,mathematical results for diffusionmodels are
pitched at a level of generality sufficient to cover such cases.14
Such generality is usually not required in financial economics.
In this vein, it is possible to exploit mathematical properties
of bounded state spaces and one-dimensional diffusions
to overcome certain analytical problems that can confront
continuous time Markov solutions. The key construct in
the S-L method is the ergodic transition probability density
function 𝑈 which is associated with the random (financial)
variable 𝑥 at time 𝑡 (𝑈 = 𝑈[𝑥, 𝑡 | 𝑥

0
]) that follows a regular,

time homogeneous diffusion process. While it is possible to
allow the state space to be an infinite open interval 𝐼

𝑜
= (𝑎, 𝑏 :

∞ ≤ 𝑎 < 𝑏 ≤ ∞), a finite closed interval 𝐼
𝑐
= [𝑎, 𝑏 :

−∞ < 𝑎 < 𝑏 < +∞] or the specific interval 𝐼
𝑠
= [0 =

𝑎 < 𝑏 < ∞) are applicable to financial variables.15 Assuming
that 𝑈 is twice continuously differentiable in 𝑥 and once in 𝑡
and vanishes outside the relevant interval, then 𝑈 obeys the
forward equation (e.g., [47, p. 102–4]):

𝜕

2

𝜕𝑥

2 {𝐵 [𝑥]𝑈} −
𝜕

𝜕𝑥

{𝐴 [𝑥]𝑈} =

𝜕𝑈

𝜕𝑡

,

(1)

where𝐵[𝑥] (=(1/2)𝜎2[𝑥] > 0) is the one half the infinitesimal
variance and 𝐴[𝑥] the infinitesimal drift of the process. 𝐵[𝑥]
is assumed to be twice and 𝐴[𝑥] once continuously differ-
entiable in 𝑥. Being time homogeneous, this formulation
permits state, but not time, variation in the drift and variance
parameters.

If the diffusion process is subject to upper and lower
reflecting boundaries that are regular and fixed (−∞ < 𝑎 <

𝑏 < ∞), the classical “Sturm-Liouville problem” involves
solving (1) subject to the separated boundary conditions:16

𝜕

𝜕𝑥

{𝐵 [𝑥]𝑈 [𝑥, 𝑡]}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑎

−𝐴 [𝑎]𝑈 [𝑎, 𝑡] = 0, (2)

𝜕

𝜕𝑥

{𝐵 [𝑥]𝑈 [𝑥, 𝑡]}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑏

−𝐴 [𝑏]𝑈 [𝑏, 𝑡] = 0. (3)

And the initial condition is as follows:

𝑈 [𝑥, 0] = 𝑓 [𝑥0] , where: ∫
𝑏

𝑎

𝑓 [𝑥0] = 1 (4)
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and 𝑓[𝑥0] is the continuous density function associated with
𝑥0 where 𝑎 ≤ 𝑥0 ≤ 𝑏. When the initial starting value, 𝑥

0
,

is known with certainty, the initial condition becomes the
Dirac delta function, 𝑈[𝑥, 0] = 𝛿[𝑥 − 𝑥

0
], and the resulting

solution for𝑈 is referred to as the “principal solution.”Within
the framework of the S-L method, a stochastic process has
the property of classical ergodicity when the transition density
satisfies the following:17

lim
𝑡→∞

𝑈 [𝑥, 𝑡 | 𝑥0] = ∫
𝑏

𝑎

𝑓 [𝑥0] 𝑈 [𝑥, 𝑡 | 𝑥0] 𝑑𝑥0

= Ψ [𝑥] .

(5)

Important special cases occur for the principal solution
(𝑓[𝑥
0
] = 𝛿[𝑥 − 𝑥

0
]) and when 𝑓[𝑥

0
] is from a specific

class such as the Pearson distributions. To be ergodic, the
time invariant stationary density Ψ[𝑥] is not permitted to
“decompose” the sample space with a finite number of
indecomposable subdensities, each of which is time invariant.
Such irreversible processes are not ergodic, even though each
of the subdensities could be restricted to obey the ergodic
theorem. To achieve ergodicity, a multimodal stationary
density can be used instead of decomposing the sample space
using subdensities with different means. In turn, multimodal
irreversible ergodic processes have the property that themean
calculated from past values of the process are not necessarily
informative enough about the modes of the ex ante densities
to provide accurate predictions.

In order to more accurately capture the ex ante properties
of financial time series, there are some potentially restrictive
features in the classical S-L framework that can be identified.
For example, time homogeneity of the process eliminates
the need to explicitly consider the location of 𝑡

0
.18 Time

homogeneity is a property of𝑈 and, as such, is consistent with
“ahistorical” MPT. In the subclass of {𝑈} denoted as {𝑈∗},
a time homogeneous and reversible stationary distribution
governs the dynamics of 𝑥(𝑡). Significantly, while 𝑈 is time
homogeneous, there are some 𝑈 consistent with irreversible
processes. A relevant issue for econophysicists is to deter-
mine which concept—time homogeneity or reversibility—
is inconsistent with economic processes that capture col-
lapsing pricing conventions in asset markets; liquidity traps
in money markets; and collapse induced structural shifts
in stock markets. In the S-L framework, the initial state of
the system (𝑥

0
) is known and the ergodic transition density

provides information about how a given point 𝑥
0
shifts 𝑡

units along a trajectory.19 In contrast, applications in financial
econometrics employ the strictly stationary 𝑈∗, where the
location of 𝑥

0
is irrelevant while 𝑈 incorporates 𝑥

0
as an

initial condition associated with the solution of a partial
differential equation.

5. Density Decomposition Results20

In general, solving the forward equation (1) for 𝑈 subject
to (2), (3) and some admissible form of (4) is difficult,
for example, Feller [45] and Risken [48]. In such circum-
stances, it is expedient to restrict the problem specification

to permit closed form solutions for the transition density
to be obtained. Wong [46] provides an illustration of this
approach. The PDE (1) is reduced to an ODE by only
considering the strictly stationary distributions arising from
the Pearson system. Restrictions on the associated Ψ[𝑥] are
constructed by imposing the fundamental ODE condition for
the unimodal Pearson system of distributions:

𝑑Ψ [𝑥]

𝑑𝑥

=

𝑒1𝑥 + 𝑒0
𝑑2𝑥

2
+ 𝑑1𝑥 + 𝑑0

Ψ [𝑥] . (6)

The transition probability density 𝑈 for the ergodic process
can then be reconstructed by working back from a specific
closed form for the stationary distribution using known
results for the solution of specific forms of the forward
equation. In this procedure, the 𝑑

0
, 𝑑
1
, 𝑑
2
, 𝑒
0
, and 𝑒

1
in the

Pearson ODE are used to specify the relevant parameters
in (1). The 𝑈 for important stationary distributions that fall
within the Pearson system, such as the normal, beta, central
𝑡, and exponential, can be derived by this method.

The solution procedure employed byWong [46] depends
crucially on restricting the PDE problem sufficiently to apply
classical S-L techniques. Using S-L methods, various studies
have generalized the set of solutions for 𝑈 to cases where
the stationary distribution is not a member of the Pearson
system or 𝑈 is otherwise unknown, for example, Linetsky
[49]. In order to employ the separation of variables technique
used in solving S-L problems, (1) has to be transformed into
the canonical form of the forward equation. To do this, the
following function associated with the invariant measure is
introduced:

𝑟 [𝑥] = 𝐵 [𝑥] exp [−∫
𝑥

𝑎

𝐴 [𝑠]

𝐵 [𝑠]

𝑑𝑠] . (7)

Using this function, the forward equation can be rewritten in
the form

1
𝑟 [𝑥]

𝜕

𝜕𝑥

{𝑝 [𝑥]

𝜕𝑈

𝜕𝑥

}+ 𝑞 [𝑥]𝑈 =

𝜕𝑈

𝜕𝑡

, (8)

where
𝑝 [𝑥] = 𝐵 [𝑥] 𝑟 [𝑥] ,

𝑞 [𝑥] =

𝜕

2
𝐵

𝜕𝑥

2 −
𝜕𝐴

𝜕𝑥

.

(9)

Equation (8) is the canonical form of (1). The S-L problem
now involves solving (8) subject to appropriate initial and
boundary conditions.

Because the methods for solving the S-L problem are
ODE-based, some method of eliminating the time deriva-
tive in (1) is required. Exploiting the assumption of time
homogeneity, the eigenfunction expansion approach applies
separation of variables, permitting (8) to be specified as

𝑈 [𝑥, 𝑡] = 𝑒

−𝜆𝑡
𝜑 [𝑥] ,

(10)

where𝜑[𝑥] is only required to satisfy the easier-to-solveODE:

1
𝑟 [𝑥]

𝑑

𝑑𝑥

[𝑝 [𝑥]

𝑑𝜑

𝑑𝑥

]+ [𝑞 [𝑥] + 𝜆] 𝜑 [𝑥] = 0. (1󸀠)
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Transforming the boundary conditions involves substitution
of (10) into (2) and (3) and solving to get

𝑑

𝑑𝑥

{𝐵 [𝑥] 𝜑 [𝑥]}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑎

−𝐴 [𝑎] 𝜑 [𝑎] = 0, (2󸀠)

𝑑

𝑑𝑥

{𝐵 [𝑥] 𝜑 [𝑥]}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑏

−𝐴 [𝑏] 𝜑 [𝑏] = 0. (3󸀠)

Significant analytical advantages are obtained by making the
S-L problem “regular” which involves assuming that [𝑎, 𝑏] is a
closed interval with 𝑟[𝑥],𝑝[𝑥], and 𝑞[𝑥] being real valued and
𝑝[𝑥] having a continuous derivative on [𝑎, 𝑏] and 𝑟[𝑥] > 0,
𝑝[𝑥] > 0 at every point in [𝑎, 𝑏]. “Singular” S-L problems arise
where these conditions are violated due to, say, an infinite
state space or a vanishing coefficient in the interval [𝑎, 𝑏].
The separated boundary conditions (2) and (3) ensure the
problem is self-adjoint [50, p. 91].

The classical S-L problem of solving (8) subject to the
initial and boundary conditions admits a solution only for
certain critical values of 𝜆, the eigenvalues. Further, since
(1) is linear in 𝑈, the general solution for (10) is given by a
linear combination of solutions in the form of eigenfunction
expansions. Details of these results can be found in Hille
[51, ch. 8], Birkhoff and Rota [52, ch. 10], and Karlin and
Taylor [53]. When the S-L problem is self-adjoint and regular
the solutions for the transition probability density can be
summarized in the following (see the appendix for proof).

Proposition 1 (ergodic transition density decomposition).
The regular, self-adjoint Sturm-Liouville problem has an infi-
nite sequence of real eigenvalues, 0 = 𝜆

0
< 𝜆

1
< 𝜆

2
< ⋅ ⋅ ⋅

with

lim
𝑛→∞

𝜆

𝑛
= ∞. (11)

To each eigenvalue there corresponds a unique eigenfunction
𝜑

𝑛
≡ 𝜑

𝑛
[𝑥]. Normalization of the eigenfunctions produces

𝜓

𝑛 [
𝑥] = [∫

𝑏

𝑎

𝑟 [𝑥] 𝜑𝑛

2
𝑑𝑥]

−1/2

𝜑

𝑛
.

(12)

The 𝜓
𝑛
[𝑥] eigenfunctions form a complete orthonormal system

in 𝐿
2
[𝑎, 𝑏]. The unique solution in 𝐿

2
[𝑎, 𝑏] to (1), subject to

the boundary conditions (2)-(3) and initial condition (4) is, in
general form,

𝑈 [𝑥, 𝑡] =

∞

∑

𝑛=0
𝑐

𝑛
𝜓

𝑛 [
𝑥] 𝑒

−𝜆
𝑛
𝑡
, (13)

where

𝑐

𝑛
= ∫

𝑏

𝑎

𝑟 [𝑥] 𝑓 [𝑥0] 𝜓𝑛 [𝑥] 𝑑𝑥. (14)

Given this, the transition probability density function for 𝑥
at time 𝑡 can be reexpressed as the sum of a stationary
limiting equilibrium distribution associated with the 𝜆

0
= 0

eigenvalue, that is linearly independent of the boundaries and

a power series of transient terms associated with the remaining
eigenvalues, that are boundary and initial condition dependent:

𝑈 [𝑥, 𝑡 | 𝑥0] = Ψ [𝑥] +𝑇 [𝑥, 𝑡 | 𝑥0] , (15)

where

Ψ [𝑥] =

𝑟 [𝑥]

−1

∫

𝑏

𝑎
𝑟 [𝑥]

−1
𝑑𝑥

. (16)

Using the specifications of 𝜆
𝑛
, 𝑐
𝑛
, and 𝜓

𝑛
, the properties of

𝑇[𝑥, 𝑡] are defined as

𝑇 [𝑥, 𝑡 | 𝑥0] =
∞

∑

𝑛=1
𝑐

𝑛
𝑒

−𝜆
𝑛
𝑡
𝜓

𝑛 [
𝑥]

=

1
𝑟 [𝑥]

∞

∑

𝑛=1
𝑒

−𝜆
𝑛
𝑡
𝜓

𝑛 [
𝑥] 𝜓𝑛

[𝑥0]

(17)

with

∫

𝑏

𝑎

𝑇 [𝑥, 𝑡 | 𝑥0] 𝑑𝑥 = 0,

lim
𝑡→∞

𝑇 [𝑥, 𝑡 | 𝑥0] = 0.
(18)

This proposition provides the general solution to the
regular, self-adjoint S-L problem of deriving 𝑈 when the
process is subject to regular reflecting barriers. Taking the
limit as 𝑡 → ∞ in (15), it follows from (16) and (17)
that the transition density of the stochastic process satisfies
the classical ergodic property. Considerable effort has been
given to determining the convergence behavior of different
processes. The distributional impact of the initial conditions
and boundary restrictions enter through 𝑇[𝑥, 𝑡 | 𝑥0]. From
the restrictions on 𝑇[𝑥, 𝑡 | 𝑥0] in (17), the total mass of
the transient term is zero so the mean ergodic theorem still
applies. The transient only acts to redistribute the mass of
the stationary distribution, thereby causing a change in shape
which can impact the ex ante calculation of the expected
value. The specific degree and type of alteration depends on
the relevant assumptions made about the parameters and ini-
tial functional forms. Significantly, stochastic generalization
of static and deterministic MPT almost always ignores the
impact of transients by only employing the limiting stationary
distribution component.

The theoretical advantage obtained by imposing regular
reflecting barriers on the diffusion state space for the forward
equation is that an ergodic decomposition of the transition
density is assured. The relevance of bounding the state space
and imposing regular reflecting boundaries can be illustrated
by considering the well known solution (e.g., [54, p. 209]) for
𝑈 involving a constant coefficient standard normal variate
𝑌(𝑡) = ({𝑥 − 𝑥

0
− 𝜇𝑡}/𝜎) over the unbounded state space

𝐼

𝑜
= (∞ ≤ 𝑥 ≤ ∞). In this case the forward equation

(1) reduces to (1/2){𝜕2𝑈/𝜕𝑌2} = 𝜕𝑈/𝜕𝑡. By evaluating these
derivatives, it can be verified that the principal solution for𝑈
is

𝑈 [𝑥, 𝑡 | 𝑥0] =
1

𝜎√(2𝜋𝑡)

exp[−
(𝑥 − 𝑥0 − 𝜇𝑡)

2

2𝜎2𝑡
] (19)
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and as 𝑡 → −∞ or 𝑡 → +∞ then 𝑈 → 0 and
the stochastic process is nonergodic because it does not
possess a nontrivial stationary distribution.Themean ergodic
theorem fails: if the process runs long enough, then 𝑈 will
evolve to where there is no discernible probability associated
with starting from 𝑥

0
and reaching the neighborhood of a

given point 𝑥. The absence of a stationary distribution raises
a number of questions, for example, whether the process
has unit roots. Imposing regular reflecting boundaries is a
certain method of obtaining a stationary distribution and a
discrete spectrum [55, p. 13]. Alternative methods, such as
specifying the process to admit natural boundaries where the
parameters of the diffusion are zero within the state space,
can give rise to continuous spectrum and raise significant
analytical complexities. At least since Feller [45], the search
for useful solutions, including those for singular diffusion
problems, has produced a number of specific cases of interest.
However, without the analytical certainty of the classical S-L
framework, analysis proceeds on a case by case basis.

One possible method of obtaining a stationary distribu-
tion without imposing both upper and lower boundaries is to
impose only a lower (upper) reflecting barrier and construct
the stochastic process such that positive (negative) infinity
is nonattracting, for example, Linetsky [49] and Aı̈t-Sahalia
[56]. This can be achieved by using a mean-reverting drift
term. In contrast, Cox and Miller [54, p. 223–5] use the
Brownianmotion, constant coefficient forward equationwith
𝑥

0
> 0,𝐴[𝑥] = 𝜇 < 0, and𝐵[𝑥] = (1/2)𝜎2 subject to the lower

reflecting barrier at 𝑥 = 0 given in (2) to solve for both the
𝑈 and the stationary density. The principal solution is solved
using the “method of images” to obtain

𝑈 [𝑥, 𝑡 | 𝑥0] =
1

𝜎
√2𝜋𝑡

{exp−(
(𝑥 − 𝑥0 − 𝜇𝑡)

2

2𝜎2𝑡
)

+ exp−(
4𝑥0𝜇𝑡 − (𝑥 − 𝑥0 − 𝜇𝑡)

2

2𝜎2𝑡
)}

+

1
𝜎
√2𝜋𝑡

{

2𝜇
𝜎

2

⋅ exp(
2𝜇𝑥
𝜎

2 )(1−𝑁[

𝑥 + 𝑥0 + 𝜇𝑡

𝜎
√
𝑡

])} ,

(20)

where 𝑁[𝑥] is the cumulative standard normal distribution
function. Observing that 𝐴[𝑥] = 𝜇 > 0 again produces 𝑈 →

0 as 𝑡 → +∞, the stationary density for 𝐴[𝑥] = 𝜇 < 0 has
the Maxwell form

Ψ [𝑥] =

2 󵄨󵄨󵄨
󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝜎

2 exp−(
2 󵄨󵄨󵄨
󵄨

𝜇

󵄨

󵄨

󵄨

󵄨

𝑥

𝜎

2 ) . (21)

Though 𝑥
0
does not enter the solution, combined with the

location of the boundary at 𝑥 = 0, it does implicitly impose
the restriction 𝑥 > 0. From the Proposition, 𝑇[𝑥, 𝑡 | 𝑥0] can
be determined as 𝑈[𝑥, 𝑡 | 𝑥

0
] − Ψ[𝑥].

Following Linetsky [49], Veerstraeten [57], and others,
the analytical procedure used to determine 𝑈 involves
specifying the parameters of the forward equation and the

boundary conditions and then solving for Ψ[𝑥] and 𝑇[𝑥, 𝑡 |
𝑥0]. Wong [46] uses a different approach, initially selecting
a stationary distribution and then solving for 𝑈 using the
restrictions of the Pearson system to specify the forward
equation. In this approach, the functional form of the desired
stationary distribution determines the appropriate boundary
conditions. While application of this approach has been
limited to the restricted class of distributions associated with
the Pearson system, it is expedient when a known stationary
distribution, such as the standard normal distribution, is of
interest. More precisely, let

Ψ [𝑥] =

1
√2𝜋

exp[−𝑥
2

2
] ,

𝐼

𝑜
= (−∞<𝑥<∞) .

(22)

In this case, the boundaries of the state space are nonat-
tracting and not regular. Solving the Pearson equation gives
𝑑Ψ[𝑥]/𝑑𝑥 = −𝑥Ψ[𝑥] and a forward equation of theOU form:

𝜕

2
𝑈

𝜕𝑥

2 +
𝜕

𝜕𝑥

𝑥𝑈 =

𝜕𝑈

𝜕𝑡

.

(23)

FollowingWong [46, p. 268] Mehler’s formula can be used to
express the solution for 𝑈 as

𝑈 [𝑥, 𝑡 | 𝑥0]

=

1

√2𝜋 (1 − 𝑒−2𝑡)
exp[

− (𝑥 − 𝑥0𝑒
−𝑡
)

2

2 (1 − 𝑒−2𝑡)
] .

(24)

Given this, as 𝑡 → −∞ then 𝑈 → 0 and as 𝑡 → +∞ then
𝑈 achieves the stationary standard normal distribution.

6. The Quartic Exponential Distribution

The roots of bifurcation theory can be found in the early
solutions to certain deterministic ordinary differential equa-
tions. Consider the deterministic dynamics described by the
pitchfork bifurcation ODE:

𝑑𝑥

𝑑𝑡

= − 𝑥

3
+𝜌1𝑥+ 𝜌0, (25)

where 𝜌
0
and 𝜌

1
are the “normal” and “splitting” control

variables, respectively (e.g., [58, 59]). While 𝜌
0
has significant

information in a stochastic context, this is not usually the case
in the deterministic problem so 𝜌

0
= 0 is assumed. Given

this, for 𝜌
1
≤ 0, there is one real equilibrium ({𝑑𝑥/𝑑𝑡} = 0)

solution to this ODE at 𝑥 = 0 where “all initial conditions
converge to the same final point exponentially fast with time”
[60, p. 260]. For 𝜌

1
> 0, the solution bifurcates into three

equilibrium solutions 𝑥 = {0, ±
√
𝜌

1
}, one unstable and two

stable. In this case, the state space is split into two physically
distinct regions (at 𝑥 = 0) with the degree of splitting
controlled by the size of 𝜌

1
. Even for initial conditions that

are “close,” the equilibrium achieved will depend on the
sign of the initial condition. Stochastic bifurcation theory
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extends this model to incorporate Markovian randomness.
In this theory, “invariant measures are the random analogues
of deterministic fixed points” [22, p. 469]. Significantly,
ergodicity now requires that the component densities that
bifurcate out of the stationary density at the bifurcation point
be invariant measures, for example, Crauel et al. [44, sec. 3].
As such, the ergodic bifurcating process is irreversible in the
sense that past sample paths (prior to the bifurcation) cannot
reliably be used to generate statistics for the future values of
the variable (after the bifurcation).

It is well known that the introduction of randomness to
the pitchfork ODE changes the properties of the equilibrium
solution, for example, [22, sec. 9.2]. It is no longer necessary
that the state space for the principal solution be determined
by the location of the initial condition relative to the bifur-
cation point. The possibility for randomness to cause some
paths to cross over the bifurcation point depends on the size
of volatility of the process, 𝜎, which measures the nonlinear
signal to white noise ratio. Of the different approaches
to introducing randomness (e.g., multiplicative noise), the
simplest approach to converting from a deterministic to a
stochastic context is to add a Weiner process (𝑑𝑊(𝑡)) to the
ODE. Augmenting the diffusion equation to allow for 𝜎 to
control the relative impact of nonlinear drift versus random
noise produces the “pitchfork bifurcationwith additive noise”
[22, p. 475] which in symmetric form is

𝑑𝑋 (𝑡) = (𝜌1𝑋 (𝑡) −𝑋 (𝑡)

3
) 𝑑𝑡 + 𝜎𝑑𝑊 (𝑡) . (26)

Applications in financial economics, for example, Aı̈t-Sahalia
[56], refer to this diffusion process as the double well process.
While consistent with the common use of diffusion equations
in financial economics, the dynamics of the pitchfork process
captured by 𝑇[𝑥, 𝑡 | 𝑥0] have been “forgotten” [22, p. 473].

Models in MPT are married to the transition probability
densities associated with unimodal stationary distributions,
especially the class of Gaussian-related distributions. Yet, it is
well known that more flexibility in the shape of the stationary
distribution can be achieved using a higher order exponential
density, for example, Fisher [61], Cobb et al. [62], and Crauel
and Flandoli [60]. Increasing the degree of the polynomial
in the exponential comes at the expense of introducing addi-
tional parameters resulting in a substantial increase in the
analytical complexity, typically defying a closed form solution
for the transition densities. However, following Elliott [63], it
has been recognized that the solution of the associated regular
S-L problem will still have a discrete spectrum, even if the
specific form of the eigenfunctions and eigenvalues in𝑇[𝑥, 𝑡 |
𝑥0] is not precisely determined [64, sec. 6.7]. Inferences about
transient stochastic behavior can be obtained by examining
the solution of the deterministic nonlinear dynamics. In this
process, attention initially focuses on the properties of the
higher order exponential distributions.

To this end, assume that the stationary distribution is a
fourth degree or “general quartic” exponential:

Ψ [𝑥] = 𝐾 exp [−Φ [𝑥]]

= 𝐾 exp [− (𝛽4𝑥
4
+𝛽3𝑥

3
+𝛽2𝑥

2
+𝛽1𝑥)] ,

(27)

where 𝐾 is a constant determined such that the density
integrates to one; and 𝛽

4
> 0.21 Following Fisher [61],

the class of distributions associated with the general quartic
exponential admits both unimodal and bimodal densities and
nests the standard normal as a limiting case where 𝛽

4
= 𝛽

3
=

𝛽

1
= 0 and 𝛽

2
= 1/2 with 𝐾 = 1/(

√
2𝜋). The stationary

distribution of the bifurcating double well process is a special
case of the symmetric quartic exponential distribution:

Ψ [𝑦] = 𝐾

𝑆
exp [− {𝛽2 (𝑥 − 𝜇)

2
+𝛽4 (𝑥 − 𝜇)

4
}] ,

where 𝛽4 ≥ 0,
(28)

where 𝜇 is the populationmean and the symmetry restriction
requires 𝛽

1
= 𝛽

3
= 0. Such multimodal stationary densities

have received scant attention in financial economics, in
general, and in MPT, in particular. To see why the condition
on𝛽
1
is needed, consider change of origin𝑋 = 𝑌−{𝛽

3
/4𝛽

4
} to

remove the cubic term from the general quartic exponential
[65, p. 480]:

Ψ [𝑦] = 𝐾

𝑄
exp [− {𝜅 (𝑦 − 𝜇

𝑦
) + 𝛼 (𝑦 − 𝜇

𝑦
)

2

+ 𝛾 (𝑦 − 𝜇

𝑦
)

4
}] , where 𝛾 ≥ 0.

(29)

The substitution of 𝑦 for 𝑥 indicates the change of origin
which produces the following relations between coefficients
for the general and specific cases:

𝜅 =

8𝛽1𝛽4
2
− 4𝛽2𝛽3𝛽4 + 𝛽3

3

8𝛽4
2 ,

𝛼 =

8𝛽2𝛽4 − 3𝛽3
2

8𝛽4
,

𝛾 = 𝛽4.

(30)

The symmetry restriction 𝜅 = 0 can only be satisfied if both
𝛽

3
and 𝛽

1
= 0. Given the symmetry restriction, the double

well process further requires −𝛼 = 𝛾 = 𝜎 = 1. Solving for
the modes of Ψ[𝑦] gives ±√{|𝛼|/(2𝛾)} which reduces to ±1
for the double well process, as in Aı̈t-Sahalia [56, Figure 6B,
p. 1385].

As illustrated in Figure 1, the selection of 𝑎
𝑖
in the station-

ary density Ψ
𝑖
[𝑥] = 𝐾

𝑄
exp{−(0.25𝑥4 − 0.5𝑥2 − 𝑎

𝑖
𝑥)} defines

a family of general quartic exponential densities, where 𝑎
𝑖

is the selected value of 𝜅 for that specific density.22 The
coefficient restrictions on the parameters 𝛼 and 𝛾 dictate that
these values cannot be determined arbitrarily. For example,
given that 𝛽

4
is set at 0.25, then, for 𝑎

𝑖
= 0, it follows that

𝛼 = 𝛽

2
= 0.5. “Slicing across” the surface in Figure 1 at

𝑎

𝑖
= 0 reveals a stationary distribution that is equal to the

double well density. Continuing to slice across as 𝑎
𝑖
increases

in size, the bimodal density becomes progressively more
asymmetrically concentrated in positive 𝑥 values.Though the
location of themodes does not change, the amount of density
between the modes and around the negative mode decreases.
Similarly, as 𝑎

𝑖
decreases in size the bimodal density becomes

more asymmetrically concentrated in positive 𝑥 values.
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Figure 1: Family of stationary densities for Ψ

𝑖
[𝑥] =

𝐾

𝑄
exp{−(0.25𝑥4 − 0.5𝑥2 − 𝑎

𝑖
𝑥)}. Each of the continuous values for

𝑎 signifies a different stationary density. For example, at 𝑎 = 0 the
density is the double well density which symmetric about zero and
with modes at ±1.

While the stationary density is bimodal over 𝑎
𝑖
𝜀{−1, 1}, for

|𝑎

𝑖
| large enough the density becomes so asymmetric that

only a unimodal density appears. For the general quartic,
asymmetry arises as the amount of the density surrounding
each mode (the subdensity) changes with 𝑎

𝑖
. In this, the

individual stationary subdensities have a symmetric shape.
To introduce asymmetry in the subdensities, the reflecting
boundaries at 𝑎 and 𝑏 that bound the state space for the
regular S-L problem can be used to introduce positive
asymmetry in the lower subdensity and negative asymmetry
in the upper subdensity.

Following Chiarella et al. [43], the stochastic bifurcation
process has a number of features which are consistent with
the ex ante behavior of a securities market driven by a
combination of chartists and fundamentalists. Placed in
the context of the classical S-L framework, because the
stationary distributions are bimodal and depend on forward
parameters, such as 𝜅, 𝛼, 𝛾, and 𝑎

𝑖
in Figure 1, that are

not known on the decision date, the risk-return tradeoff
models employed in MPT are uninformative. What use is
the forecast provided by 𝐸[𝑥(𝑇)] when it is known that
there are other modes for 𝑥(𝑇) values that are more likely
to occur? A mean estimate that is close to a bifurcation
point would even be unstable. The associated difficulty of
calculating an expected return forecast or other statistical
estimate such as volatility from past data can be compounded
by the presence of transients that originate from boundaries
and initial conditions. For example, the presence of a recent
structural break, for example, the collapse in global stock
prices from late 2008 to early 2009, can be accounted for
by appropriate selection of 𝑥

0
, the fundamental dependence

of investment decisions on the relationship between 𝑥

0

and future (not past) performance is not captured by the
reversible ergodic processes employed in MPT that ignore
transients arising from initial conditions. Mathematical tools
such as classical S-L methods are able to demonstrate this
fundamental dependence by exploiting properties of ex ante
bifurcating ergodic processes to generate theoretical ex post

sample paths that provide a better approximation to the
sample paths of observed financial data.

7. Conclusion

The classical ergodicity hypothesis provides a point of demar-
cation in the prehistories of MPT and econophysics. To
deal with the problem of making statistical inferences from
“nonexperimental” data, theories in MPT typically employ
stationary densities that are time reversible, are unimodal,
and allow no short or long term impact from initial and
boundary conditions.The possibility of bimodal processes or
ex ante impact from initial and boundary conditions is not
recognized or, it seems, intended. Significantly, as illustrated
in the need to select an 𝑎

𝑖
in Figure 1 in order to specify the

“real world” ex ante stationary density, a semantic connection
can be established between the subjective uncertainty about
encountering a future bifurcation point and, say, the possible
collapse of an asset price bubble impacting future market
valuations. Examining the quartic exponential stationary
distribution associatedwith a bifurcating ergodic process, it is
apparent that this distribution nests theGaussian distribution
as a special case. In this sense, results from classical statistical
mechanics can be employed to produce a stochastic general-
ization of the unimodal, time reversible processes employed
in modern portfolio theory.

Appendix

Preliminaries on Solving the
Forward Equation

Due to the widespread application in a wide range of sub-
jects, textbook presentations of the Sturm-Liouville problem
possess subtle differences that require some clarification
to be applicable to the formulation used in this paper. In
particular, to derive the canonical form (8) of the Fokker-
Planck equation (1), observe that evaluating the derivatives
in (1) gives

𝐵 [𝑥]

𝜕

2
𝑈

𝜕𝑥

2 +[2
𝜕𝐵

𝜕𝑥

−𝐴 [𝑥]]

𝜕𝑈

𝜕𝑥

+[

𝜕

2
𝐵

𝜕𝑥

2 −
𝜕𝐴

𝜕𝑥

]𝑈

=

𝜕𝑈

𝜕𝑡

.

(A.1)

This can be rewritten as

1
𝑟 [𝑥]

𝜕

𝜕𝑥

[𝑃 [𝑥]

𝜕𝑈

𝜕𝑥

]+𝑄 [𝑥]𝑈 =

𝜕𝑈

𝜕𝑡

, (A.2)

where

𝑃 [𝑥] = 𝐵 [𝑥] 𝑟 [𝑥] ,

1
𝑟 [𝑥]

𝜕𝑃

𝜕𝑥

= 2𝜕𝐵
𝜕𝑥

−𝐴 [𝑥] ,

𝑄 [𝑥] =

𝜕

2
𝐵

𝜕𝑥

2 −
𝜕𝐴

𝜕𝑥

.

(A.3)
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It follows that

𝜕𝐵

𝜕𝑥

=

1
𝑟 [𝑥]

𝜕𝑃

𝜕𝑥

−

1
𝑟

2
𝜕𝑟

𝜕𝑥

𝑃 [𝑥]

= 2𝜕𝐵
𝜕𝑥

−𝐴 [𝑥] −

𝐵 [𝑥]

𝑟 [𝑥]

𝜕𝑟

𝜕𝑥

.

(A.4)

This provides the solution for the key function 𝑟[𝑥]:

1
𝑟 [𝑥]

𝜕𝑟

𝜕𝑥

−

1
𝐵 [𝑥]

𝜕𝐵

𝜕𝑥

= −

𝐴 [𝑥]

𝐵 [𝑥]

󳨀→ ln [𝑟] − ln [𝑘]

= −∫

𝑥
𝐴 [𝑠]

𝐵 [𝑠]

𝑑𝑠,

𝑟 [𝑥] = 𝐵 [𝑥] exp [−∫
𝑥
𝐴 [𝑠]

𝐵 [𝑠]

𝑑𝑠] .

(A.5)

This 𝑟[𝑥] function is used to construct the scale and speed
densities commonly found in presentations of solutions to
the forward equation, for example, Karlin and Taylor [53] and
Linetsky [49].

Another specification of the forward equation that is of
importance is found in Wong [46, eq. 6-7]:

𝑑

𝑑𝑥

[𝐵 [𝑥] 𝜌 [𝑥]

𝑑𝜃

𝑑𝑥

]+𝜆𝜌 [𝑥] 𝜃 [𝑥] = 0

with b.c. 𝐵 [𝑥] 𝜌 [𝑥] 𝑑𝜃
𝑑𝑥

= 0.
(A.6)

This formulation occurs after separating variables, say with
𝑈[𝑥] = 𝑔[𝑥]ℎ[𝑡]. Substituting this result into (1) gives

𝜕

2

𝜕𝑥

2 [𝐵𝑔ℎ] −
𝜕

𝜕𝑥

[𝐴𝑔ℎ] = 𝑔 [𝑥]

𝜕ℎ

𝜕𝑡

.

(A.7)

Using the separation of variables substitution (1/ℎ){𝜕ℎ/𝜕𝑡} =
−𝜆 and redefining 𝑔[𝑥] = 𝜌𝜃 gives

𝑑

𝑑𝑥

[

𝑑

𝑑𝑥

𝐵𝑔−𝐴𝑔]

= −𝜆𝑔

=

𝑑

𝑑𝑥

[

𝑑

𝑑𝑥

𝐵 [𝑥] 𝜌 [𝑥] 𝜃 [𝑥] −𝐴 [𝑥] 𝜌 [𝑥] 𝜃 [𝑥]]

= − 𝜆𝜌𝜃.

(A.8)

Evaluating the derivative inside the bracket and using the
condition {𝑑/𝑑𝑥}[𝐵𝜌] − 𝐴𝜌 = 0 to specify admissible 𝜌 give

𝑑

𝑑𝑥

[𝜃

𝑑

𝑑𝑥

(𝐵𝜌) +𝐵𝜌

𝑑

𝑑𝑥

𝜃 −𝐴𝜌𝜃]

=

𝑑

𝑑𝑥

[𝐵𝜌

𝑑

𝑑𝑥

𝜃] = −𝜆𝜌 [𝑥] 𝜃 [𝑥]

(A.9)

which is equation (6) in Wong [46]. The condition used
to define 𝜌 is then used to identify the specification of

𝐵[𝑥] and 𝐴[𝑥] from the Pearson system. The associated
boundary condition follows from observing the 𝜌[𝑥] will be
the ergodic density andmaking appropriate substitutions into
the boundary condition:

𝜕

𝜕𝑥

{𝐵 [𝑥] 𝑓 [𝑡] 𝜌 [𝑥] 𝜃 [𝑥]} −𝐴 [𝑥] 𝑓 [𝑡] 𝜌 [𝑥] 𝜃 [𝑥]

= 0

󳨀→

𝑑

𝑑𝑥

[𝐵𝜌𝜃] −𝐴𝜌𝜃 = 0.

(A.10)

Evaluating the derivative and taking values at the lower (or
upper) boundary give

𝐵 [𝑎] 𝜌 [𝑎]

𝑑𝜃 [𝑎]

𝑑𝑥

+ 𝜃 [𝑎]

𝑑𝐵𝜌

𝑑𝑥

−𝐴 [𝑎] 𝜌 [𝑎] 𝜃 [𝑎]

= 0

= 𝐵 [𝑎] 𝜌 [𝑎]

𝑑𝜃 [𝑎]

𝑑𝑥

+ 𝜃 [𝑎] [

𝑑𝐵 [𝑎] 𝜌 [𝑎]

𝑑𝑥

−𝐴 [𝑎] 𝜌 [𝑎]] .

(A.11)

Observing that the expression in the last bracket is the
original condition with the ergodic density serving as𝑈 gives
the boundary condition stated in Wong [46, eq. 7].

Proof of Proposition 1. (a) 𝜓
𝑛
has exactly 𝑛 zeroes in [𝑎, 𝑏]:

Hille [51, p. 398,Theorem 8.3.3] and Birkhoff and Rota [52, p.
320, Theorem 5] show that the eigenfunctions of the Sturm-
Liouville system (1󸀠) with (2󸀠), (3󸀠), and (4) have exactly 𝑛
zeroes in the interval (𝑎, 𝑏).More precisely, since it is assumed
that 𝑟 > 0, the eigenfunction 𝜓

𝑛
corresponding to the 𝑛th

eigenvalue has exactly 𝑛 zeroes in (𝑎, 𝑏).
(b) For 𝜓

𝑛
= 0, ∫𝑏
𝑎
𝜓

𝑛
[𝑥]𝑑𝑥 = 0.

Proof. For 𝜓
𝑛
= 0 the following applies:

𝜓

𝑛
=

1
𝜆

𝑛

𝑑

𝑑𝑥

{

𝑑

𝑑𝑥

[𝐵 [𝑥] 𝜓𝑛
] −𝐴 [𝑥] 𝜓𝑛

} ,

∴ ∫

𝑏

𝑎

𝜓

𝑛 [
𝑥] 𝑑𝑥 =

1
𝜆

𝑛

{

𝑑

𝑑𝑥

[𝐵 [𝑥] 𝜓𝑛
]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑏

−𝐴 [𝑏] 𝜓𝑛 [
𝑏] −

𝑑

𝑑𝑥

[𝐵 [𝑥] 𝜓𝑛
]

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝑥=𝑎

+𝐵 [𝑎] 𝜓𝑛 [
𝑎]} = 0.

(A.12)

Since each 𝜓
𝑛
[𝑥] satisfies the boundary conditions.

(c) For some 𝑘, 𝜆
𝑘
= 0.

Proof. From (13)

𝑈 [𝑥, 𝑡] =

∞

∑

𝑘=0
𝑐

𝑘
𝑒

−𝜆
𝑘
𝑡
𝜓

𝑘 [
𝑥] . (A.13)
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Since ∫𝑏
𝑎
𝑈[𝑥, 𝑡]𝑑𝑥 = 1 then

1 =
∞

∑

𝑘=0
𝑐

𝑘
𝑒

−𝜆
𝑘
𝑡
∫

𝑏

𝑎

𝜓

𝑘 [
𝑥] 𝑑𝑥. (A.14)

But from part (b) this will = 0 (which is a contradiction)
unless 𝜆

𝑘
= 0 for some 𝑘.

(d) Consider 𝜆
0
= 0.

Proof. From part (a), 𝜓
0
[𝑥] has no zeroes in (𝑎, 𝑏). Therefore,

either ∫𝑏
𝑎
𝜓0[𝑥]𝑑𝑥 > 0 or ∫𝑏

𝑎
𝜓0[𝑥]𝑑𝑥 < 0.

It follows from part (b) that 𝜆
0
= 0.

(e) Consider 𝜆
𝑛
> 0 for 𝑛 ̸= 0. This follows from part (d)

and the strict inequality conditions provided in part (a).
(f) Obtaining the solution for 𝑇[𝑥] in the Proposition,

from part (d) it follows that

𝑑

𝑑𝑥

{[𝐵 [𝑥] 𝜓0 [𝑥, 𝑡]]𝑥 −𝐴 [𝑥] 𝜓0 [𝑥, 𝑡]} = 0. (A.15)

Integrating this equation from 𝑎 to 𝑥 and using the boundary
condition give

[𝐵 [𝑥] 𝜓0 [𝑥, 𝑡]]𝑥 −𝐴 [𝑥] 𝜓0 [𝑥, 𝑡] = 0. (A.16)

This equation can be solved for 𝜓
0
to get

𝜓0 = 𝐴 [𝐵 [𝑥]]
−1 exp [∫

𝑥

𝑎

𝐴 [𝑠]

𝐵 [𝑠]

𝑑𝑠] = 𝐶 [𝑟 [𝑥]]

−1
,

where: 𝐶 = constant.
(A.17)

Therefore,

𝜓0 [𝑥] = [∫
𝑏

𝑎

𝑟 [𝑥] 𝐶

2
[𝑟 [𝑥]]

−2
𝑑𝑥]

−1/2

𝐶 [𝑟 [𝑥]]

−1

=

[𝑟 [𝑥]]

−1

[∫

𝑏

𝑎
𝑟 [𝑥]

−1
𝑑𝑥]

1/2 .

(A.18)

Using this definition and observing that the integral of 𝑓[𝑥]
over the state space is one it follows

𝑐0 = ∫
𝑏

𝑎

{

{

{

{

{

𝑓 [𝑥] 𝑟 [𝑥]

𝑟 [𝑥]

−1

[∫

𝑏

𝑎
𝑟 [𝑥] 𝑑𝑥]

1/2

}

}

}

}

}

𝑑𝑥

=

1

[∫

𝑏

𝑎
𝑟 [𝑥] 𝑑𝑥]

1/2 ,

∴ 𝑐0𝜓 [𝑥] =
𝑟 [𝑥]

−1

[∫

𝑏

𝑎
[𝑟 [𝑥]]

−1
𝑑𝑥]

.

(A.19)

(g) The Proof of the Proposition now follows from parts (f),
(e), and (b).
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Endnotes

1. For example, Black and Scholes [4] discuss the con-
sistency of the option pricing formula with the capi-
tal asset pricing model. More generally, financial eco-
nomics employs primarily Gaussian-based finite param-
eter models that agree with the “tradeoff between risk
and return.”

2. In rational mechanics, once the initial positions of the
particles of interest, for example, molecules, are known,
the mechanical model fully determines the future evo-
lution of the system. This scientific and philosophical
approach is often referred to as Laplacian determinism.

3. Boltzmann and Max Planck were vociferous opponents
of energetics. The debate over energetics was part of a
larger intellectual debate concerning determinism and
reversibility. Jevons [66, p. 738-9] reflects the entrenched
determinist position of the marginalists: “We may safely
accept as a satisfactory scientific hypothesis the doctrine
so grandly put forth by Laplace, who asserted that
a perfect knowledge of the universe, as it existed at
any given moment, would give a perfect knowledge
of what was to happen thenceforth and for ever after.
Scientific inference is impossible, unless we may regard
the present as the outcome of what is past, and the cause
of what is to come. To the view of perfect intelligence
nothing is uncertain.” What Boltzmann, Planck, and
others had observed in statistical physics was that even
though the behavior of one or two molecules can be
completely determined, it is not possible to generalize
thesemechanics to the describe themacroscopicmotion
of molecules in large, complex systems, for example,
Brush [67, esp. ch. II].

4. As such, Boltzmann was part of the larger: “Second
Scientific Revolution, associated with the theories of
Darwin, Maxwell, Planck, Einstein, Heisenberg and
Schrödinger, (which) substituted a world of process
and chance whose ultimate philosophical meaning still
remains obscure” [67, p. 79].This revolution superceded
the following: “First Scientific Revolution, dominated by
the physical astronomy of Copernicus, Kepler, Galileo,
and Newton,. . . in which all changes are cyclic and all
motions are in principle determined by causal laws.”
The irreversibility and indeterminism of the Second
Scientific Revolution replaces the reversibility and deter-
minism of the first.
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5. There are many interesting sources on these points
which provide citations for the historical papers that are
being discussed. Cercignani [68, p. 146–50] discusses
the role of Maxwell and Boltzmann in the development
of the ergodic hypothesis. Maxwell [25] is identified as
“perhaps the strongest statement in favour of the ergodic
hypothesis.” Brush [69] has a detailed account of the
development of the ergodic hypothesis. Gallavotti [70]
traces the etymology of “ergodic” to the “ergode” in an
1884 paper by Boltzmann. More precisely, an ergode
is shorthand for “ergomonode” which is a “monode
with given energy” where a “monode” can be either
a single stationary distribution taken as an ensemble
or a collection of such stationary distributions with
some defined parameterization. The specific use is clear
from the context. Boltzmann proved that an ergode
is an equilibrium ensemble and, as such, provides a
mechanical model consistent with the second law of
thermodynamics. It is generally recognized that the
modern usage of “the ergodic hypothesis” originates
with Ehrenfest [71].

6. Kapetanios and Shin [37, p. 620] capture the essence of
this quandary: “Interest in the interface of nonstation-
arity and nonlinearity has been increasing in the econo-
metric literature. The motivation for this development
may be traced to the perceived possibility that nonlinear
ergodic processes can be misinterpreted as unit root
nonstationary processes. Furthermore, the inability of
standard unit root tests to reject the null hypothesis of
unit root for a large number of macroeconomic vari-
ables, which are supposed to be stationary according to
economic theory, is another reason behind the increased
interest.”

7. The second law of thermodynamics is the universal law
of increasing entropy, a measure of the randomness of
molecular motion and the loss of energy to do work.
First recognized in the early 19th century, the second
law maintains that the entropy of an isolated system,
not in equilibrium, will necessarily tend to increase
over time. Entropy approaches a maximum value at
thermal equilibrium. A number of attempts have been
made to apply the entropy of information to problems
in economics, with mixed success. In addition to the
second law, physics now recognizes the zeroth law of
thermodynamics that “any system approaches an equi-
librium state” [72, p. 54]. This implication of the second
law for theories in economics was initially explored by
Georgescu-Roegen [73].

8. In this process, the ergodicity hypothesis is required
to permit the one observed sample path to be used to
estimate the parameters for the ex ante distribution of
the ensemble paths. In turn, these parameters are used
to predict future values of the economic variable.

9. Heterodox critiques are associated with views consid-
ered to originate from within economics. Such critiques
are seen to be made by “economists,” for example, Post-
Keynesian economists, institutional economists, radical

political economists, and so on. Because such critiques
take motivation from the theories of mainstream eco-
nomics, these critiques are distinct from econophysics.
Following Schinckus [12, p. 3818], “Econophysicists have
then allies within economics with whom they should
become acquainted.”

10. Dhrymes [31, p. 1–29] discusses the algebra of the lag
operator.

11. Critiques of mainstream economics that are rooted in
the insights of The General Theory recognize the dis-
tinction between fundamental uncertainty and objective
probability. As a consequence, the definition of ergodic
theory in heterodox criticisms ofmainstream economics
lacks formal precision, for example, the short term
dependence of ergodic processes on initial conditions is
not usually recognized. Ergodic theory is implicitly seen
as another piece of the mathematical formalism inspired
by Hilbert and Bourbaki and captured in the Arrow-
Debreu general equilibrium model of mainstream eco-
nomics.

12. In this context though not in all contexts, econophysics
provides a “macroscopic” approach. In turn, ergodicity
is an assumption that permits the time average from a
single observed sample path to (phenomenologically)
model the ensemble of sample paths. Given this, econo-
physics does contain a substantively richer toolkit that
encompasses both ergodic and nonergodic processes.
Many works in econophysics implicitly assume ergod-
icity and develop models based on that assumption.

13. The distinction between invariant and ergodic measures
is fundamental. Recognizing a number of distinct defi-
nitions of ergodicity are available, following Medio [74,
p. 70], the Birkhoff-Khinchin ergodic (BK) theorem for
invariant measures can be used to demonstrate that
ergodic measures are a class of invariant measures.
More precisely, the BK theorem permits the limit of
the time average to depend on initial conditions. In
effect, the invariant measure is permitted to decompose
into invariant “submeasures.”Thephysical interpretation
of this restriction is that sample paths starting from a
particular initial condition may only be able to access a
part of the sample space, nomatter how long the process
is allowed to run. For an ergodic process, sample paths
starting fromany admissible initial conditionwill be able
to “fill the sample space”; that is, if the process is allowed
to run long enough, the time average will not depend on
the initial condition. Medio [74, p. 73] provides a useful
example of an invariant measure that is not ergodic.

14. The phenomenological approach is not without difficul-
ties. For example, the restriction to Markov processes
ignores the possibility of invariant measures that are
not Markov. In addition, an important analytical con-
struct in bifurcation theory, the Lyapunov exponent,
can encounter difficulties with certain invariant Markov
measures. Primary concern with the properties of the
stationary distribution is not well suited to analysis of
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the dynamic paths around a bifurcation point. And so
it goes.

15. A diffusion process is “regular” if starting from any
point in the state space 𝐼, any other point in 𝐼 can be
reached with positive probability (Karlin and Taylor [53,
p. 158]. This condition is distinct from other definitions
of regular that will be introduced: “regular boundary
conditions” and “regular S-L problem.”

16. The classification of boundary conditions is typically an
important issue in the study of solutions to the forward
equation. Important types of boundaries include regu-
lar, exit, entrance, and natural. Also the following are
important in boundary classification: the properties of
attainable and unattainable, whether the boundary is
attracting or non-attracting, and whether the boundary
is reflecting or absorbing. In the present context, reg-
ular, attainable, reflecting boundaries are usually being
considered, with a few specific extensions to other types
of boundaries. In general, the specification of boundary
conditions is essential in determining whether a given
PDE is self-adjoint.

17. Heuristically, if the ergodic process runs long enough,
then the stationary distribution can be used to estimate
the constant mean value. This definition of ergodic
is appropriate for the one-dimensional diffusion cases
considered in this paper. Other combinations of trans-
formation, space, and function will produce different
requirements. Various theoretical results are available
for the case at hand. For example, the existence of an
invariant Markov measure and exponential decay of the
autocorrelation function are both assured.

18. For ease of notation it is assumed that 𝑡
0

= 0. In
practice, solving (1) combined with (2)–(4) requires
𝑎 and 𝑏 to be specified. While 𝑎 and 𝑏 have ready
interpretations in physical applications, for example, the
heat flow in an insulated bar, determining these values
in economic applications can bemore challenging. Some
situations, such as the determination of the distribution
of an exchange rate subject to control bands (e.g., [75]),
are relatively straight forward. Other situations, such as
profit distributions with arbitrage boundaries or output
distributions subject to production possibility frontiers,
may require the basic S-L framework to be adapted to
the specifics of the modeling situation.

19. The mathematics at this point are heuristic. It would be
more appropriate to observe that 𝑈∗ is the special case
where 𝑈 = Ψ[𝑥], a strictly stationary distribution. This
would require discussion of how to specify the initial and
boundary conditions to ensure that this is the solution to
the forward equation.

20. A more detailed mathematical treatment can be found
in de Jong [76].

21. In what follows, except where otherwise stated, it is
assumed that 𝜎 = 1. Hence, the condition that 𝐾
be a constant such that the density integrates to one
incorporates the 𝜎 = 1 assumption. Allowing 𝜎 ̸= 1 will
scale either the value of 𝐾 or the 𝛽’s from that stated.

22. Anumber of simplificationswere used to produce the 3D
image in Figure 1: 𝑥 has been centered about 𝜇 and 𝜎 =
𝐾

𝑄
= 1. Changing these values will impact the specific

size of the parameter values for a given 𝑥 but will not
change the general appearance of the density plots.
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