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ABSTRACT
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Distributions for Diffusions Subject to
Constant Reflecting Barriers: A Decomposition Result

1. Introduction

While the distributional implications of imposing boundary restrictions on diffusion processes have
long been recognized (e.g., Feller [7]), direct connections between specific types of boundary
restrictions and the associated distributions are available only in special cases (e.g., Giorno, et.al. [8],
[9], Ricciardi and Sacerdote [18], Sacerdote [19], Buonocore, et.al. [4], Nobile, et.al. [16]). This is in
striking contrast to the numerous specific and general results developed for the unrestricted case. In
this vein, applications of stochastic processes often assume that the processes of interest are unrestricted
even though there are often legitimate reasons for imposing boundary restrictions. This predisposition
toward unrestricted processes can partially be attributed to the complexity of solving the Fokker-Planck
equations to identify the distributions associated with bounded processes. With this in mind, this paper
presents a density decomposition result which can be used to simplify the evaluation of distributional
implications associated with imposing constant reflecting barrier restrictions on diffusions. The
decomposition is developed by applying the classical Sturm-Liouville solution to an appropriate
specified ODE problem (e.g., Boyce and Di Prima [3]). Theresult is also derived using the properties
of the semigroup of operators associated with the forward equation.

In the following, Section 2 reviews the analytical structure required to develop distributional
solutions for diffusion processes subject to constant reflecting barriers. Section 3 provides the general
solution to the forward equation applicable to examining the distributional implications of boundary
restrictions. The essence of the main result is that the probability density can be decomposed into a
limiting equilibrium (ergodic) distribution and a power series of transient terms which are time and
boundary dependent. The connection to applied distribution estimation is described heuristically.
Section 4 develops the main result in the context of operator semigroups. Section 5 provides an
application to the problem of numerically simulating probability densities. Finally, Section 6 provides

the proofs of Propositions contained in the paper.

2. Basic Structure

The conditions derived here provide an analysis of a specific class of reflecting boundary problems.
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Distributional implications are evaluated by modelling the relevant random variable as a one-
dimensional diffusion process subject to constant upper and lower reflecting barriers. Starting from
some appropriate initial distribution, the location of the boundaries are found to give rise to transients
which act to redistribute the probability mass of the ergodic distribution. The diffusion process
framework is used because it imposes a sufficient enough functional structure to develop the theory.
However, the results can readily be extended to other types of distributions, such as the Cauchy, which
are not usually associated with diffusions. Formally, a diffusion is defined here to be continuous (with
probability one), time homogeneous strong Markov process (e.g., Gihman and Skorohod [10], Karlin
and Taylor [14]), {x(t); t > t,}, with drift parameter (x) and infinitesimal variance k(x). The
associated conditional probability density function will be denoted U(x,t). The usual regularity
conditions, (e.g., Arnold [1] p. 40, p. 112) are imposed on 3, k and U.
Specifically, sufficient functional structure is imposed such that the probability density function

U(x,t) for the stochastic variable x, obeys the forward (Fokker-Planck) equation at time t:

(2.1 U, = [k(x) U()] - [Bx) UC)1, subject to two boundary conditions:
€3) %[k(X)U &1l . - B@Uap =0
(24) LU0,y - BOUG = 0
and the initial condition:
(2.5) Ux,0) = fix,)
where:

b
[Rxs, = 1

where f(X,) is the probability density function associated with x,
and subscripts denote partial differentiation with respect to the listed variable. This formulation,
permits state, but not time, variation in the parameters k and [3.

Solving for the U(+) which satisfies (2.1) and (2.3)-(2.5) involves some analytical effort. In the
method used here, the forward equation has to be transformed into its "canonical form" which allows

that problem to be treated as a regular Sturm-Liouville (S-L) problem (Boyce and Di Prima [3]) where



4
"regular" means the separation between the boundaries is finite and k(x) does not vanish at the
boundary. Hence, in the following it is required that k(x) # 0 with a < x < b. While the solution to
the one reflecting boundary S-L problem is singular, this case can be sometimes be handled within the
two boundary framework by setting the location of f(x,) sufficiently far from one boundary that it has
no "significant" impact on the final result. In any event, admitting both upper and lower boundaries
permits application of the following classical result relevant to processes subject to boundaries:
Proposition I:
The regular Sturm-Liouville problem has an infinite sequence of real eigenvalues, A, <A, <A, ..... with:

lim A, =

n-— o

To each eigenvalue there corresponds a unique eigenfunction X,. The eigenfunctions form a complete
orthonormal system in L,(a,b).

By providing an appropriate basis, Proposition I facilitates the derivation of the decomposition of U(").
The significance of this approach is that the Sturm-Liouville is an ODE problem; the introduction of
upper and lower reflecting boundaries immediately transforms the problem of solving an SDE into the
more manageable problem of solving an ODE.

The transformation of U() into its canonical form as required for direct application of Proposition

I involves the introduction of the following functions:
x /
r(x)=k(x)expi{- f de g
" k(x "

b
2.6) ®,() = [[r6) X, () 1™ X, ()

As described in Section 6, the r(x) function originates from the derivation of the canonical form while
® (x) is the result of normalizing the X, eigenfunctions. Given that expressing the problem in its
canonical form permits the application of Proposition L, it follows:

Corollary L1:

The unique solution in L,(a,b) to (2.1), subject to the boundary conditions (2.3)-(2.4) and initial
condition (2.5) is, in general form:



2.7) Ulx,f) = f: c, @ (x) expl-A tt
n=0
b
where: ¢, = f r(x) flx) ©,(x) dx

a

This corollary provides the general solution to the problem of deriving U when the process is subject
to reflecting barriers. However, while useful, (2.7) is not immediately revealing for many practical

applications because time is allowed to vary over [0,e].

3. Main Results

In physical studies, a central objective of analysis is the ergodic behaviour of a process, i.e., the
limiting behaviour of U as t - «. However, the ergodic distribution is often of little direct interest in,
say, statistical studies. Instead, attention focuses on the properties of U(*) when (2.7) is formulated over
a specific time interval such as At=1, the unit time interval. For example, when X is a price, it is the
price change distribution taken over some specified interval (daily, monthly, annual) which is of
interest. Given this, properties of the distribution are typically "identified" by examining the behaviour
of functions of the associated random variables, taken over t € [0,T] where the sample set can be either
discrete or continuous. This often involves using a likelihood function derived from a series of one-
step ahead distributions (e.g., Lo [15], Feigen [6]). Given this, it is possible to develop relevant results
for the U(*)'s associated with different types of boundary restrictions. Testable restrictions can be
formulated about the shape and iid behaviour of the relevant distributions.

As stated, (2.7) cannot be readily applied to the types of distributions typically encountered in
empirical studies. Further, simplification is required. This leads to the following fundamental result:
Proposition II: Density Decomposition

The transition probability density function for x at time t (U(x,t)) can be expressed as the sum of a
limiting equilibrium density which is independent of time and a power series of transient terms which
are boundary and time dependent, i.e.:

(3.1) U(x,t) =R(x) + K(x,t)



where:
3.2) R() = br(x—)l
/ rx)! dx
b
(3.3) f K(x,f)dx = 0
(3.4) lim K(x,f) = 0
with:
(3.5) K(x,p) = i:cn exp[-A f] @ (x)
n=1

If the normalizing constant referred to in the Proposition:
b

f r(x) dx

a

is ignored, then the ergodic distribution can also be said to be independent of the boundaries. In many
cases, Proposition II provides sufficient structure to analyze the distributional implications of reflecting
barriers. In particular, because the series given in (3.5) involves powers of exp{-A,}, the terms in the
sum will decrease monotonically as n ~ «~ permitting truncation of the series past some point.

To illustrate some specific cases, consider the variety of limiting equilibrium distributions R(x)
generated by appropriate choices of B(x), k(x) and [a,b]. For example, if f(x) = p and k(x) = 40° then
R(x) is exponential. If p = 0, the exponential reduces to a uniform over (- <a <b < ). A normal
distribution requires k(x) = 20” and = -pu(x - X,). A lognormal requires k(x) = 20°x and § = -p.(In(x)
- In(x,)). Other cases follow appropriately. If the process is unrestricted and constant parameter, the
one-step-ahead (At =1) distribution will replicate at each t € [0,T] and the appropriately specified
process will be 1id. With boundary restrictions, the distributional impact enters through K(x,t). From
(3.3) the total mass of the transient term is zero. The transient acts to redistribute the mass of the
equilibrium distribution, thereby causing a change in shape. The specific degree and type of alteration

depends on the relevant assumptions made about the parameters, initial functional forms and selection



of t.

To see heuristically how the transients and ergodic density interact, consider a system constrained
by upper and lower boundaries which has been unperturbed for a sufficiently long time such that U(*)
has settled down to R(x). If the boundaries are then moved, this will induce transients which act to
redistribute probability mass at each point in time changing the observed shape of U(+). In the long run,
the transients die away and U(*) returns to the original (except for a scaling factor) ergodic distribution.
Using the eigenvalues derived from the S-L problem it is possible to numerically simulate the changing
shape of U(+) over time. With appropriate selection of f(x,), it is possible to extend this approach to
examining processes, such as the a-stable, which have upper moments for the unrestricted process
which vanish ast — « but still have defined eigenvalues. By imposing boundaries on the paths of these

processes, it is possible to evaluate the distributional impact of imposing boundary restrictions.

4. The Semigroup Connection

The objective of this Section is demonstrate that Proposition II can also be developed using the
semigroup properties of differential operators to derive a specific representation for f,U € L,(S,u),
defined over the bounded state space S (x € S) with some implied measure p. This formulation permits
the representation of U(x,t) by specifying a complete orthonormal basis provided by the eigenfunctions

of the D operator associated with the forward equation:

_ 0 _ 0
D = 7 k(x) » Bx)

Significantly, in applying the operator semigroup approach, D does not necessarily have to be a
differential operator in order to form the eigenfunction expansion. However, the completeness of the
eigenfunctions is essential. Given the initial conditions (2.5) and the boundary conditions (2.3)-(2.4)

which restrict the domain of U, Dom(U) c [a,b], in Corollary I.1 the solution to U(x,t) was given by:



4.1 Ulx,f) = i c, @ (x) expl-A 1
n=0

where:
b

c, = f rOAO)®, (x)dx

a

In terms of the operator D, in (4.1) @, is the function which results from normalizing the eigenfunctions
of D; r(x) 1s a weighting function depending directly on .
Given this, T(t) can be defined as an integral operator with kernel G(t). In the presence of boundary

restrictions at a and b, the integral operation is specified:
b
(42) Ut) = GO ° flx) = [ Glexx') rx) fix') d’
a

Significantly, G obeys the semigroup property: G(t) o G(s) = G(t+s). Further, because G is self-adjoint

(e.g., Reed and Simon [17]), G has the decomposition:
4.3) G(0) = Gt + G'®
where:

GoUtxx") = ®y(x) expl{-A8 B (x

=@ (x) <I>0(x/) since Ay = 0

Gltxx’) = Y ® (x) expl-A 1 ® (x")
n=1
It follows that the decomposition is orthogonal, i.e., G'(t) o G°(t) = 0. This leads to the following:

Proposition III: Decomposition of T

The semigroup of bounded linear operators {T(t)} which generate a solution to (4.1) subject to the
initial condition U(x,0) = f(x,) and other well-posed boundary and initial conditions, has a unique
orthogonal decomposition:

T(t) = T°(t) + T'(t)
where: T°(t) T'(t) =0



d T _
4.4) — - 0

dT'() _
4.5) i
(4.6) lim T'() = 0

f-oo

Conditions (4.4)-(4.6) provide fundamental information about the properties of T(t). Given the strict
contraction semigroup property for T(t), Proposition Il can be used to show that there is a unique fixed
point of T which is T°. Formally, when G is self-adjoint the A=0 eigenvalue is the invariant of the
semigroup. In turn, this invariant admits the (normalized) inverse of the density derived with respect
to u. This invariant is directly related to R(x) in (3.1).

Similar to the implications of Proposition II, (4.4)-(4.6) demonstrate that T is composed of a time
invariant operator (4.4) and a transient operator (4.6), i.e., the transient operator dies out over time. In
a statistical context, interpreting the invariant of the semigroup as a density leads directly to specifying
U(x,t) as a transition probability density. In this case, T° is the ergodic density while T' acts to
redistribute the ergodic density at a given point in time. When the discrete spectrum of the operator
is generated by assuming a combination of bounded Dom(U) and self-adjointness of D, these transient
terms arise from the boundary restrictions being imposed on the underlying process. (Of statistical
importance, the presence of boundaries on Dom(U) typically results in a loss of the iid property.) It
follows that there may be significant analytical advantages to expressing practical applications in terms
of bounded Dom(U). In particular, Proposition III provides a method for extending results developed
for unrestricted stochastic processes to the restricted process case.

5. Applications of the Decomposition

In financial economics, the function T(x,t=1) is of specific interest because data is typically sampled
at fixed frequencies. Statistics are formed from functions of sums of the resulting random variables.
In this case, the t in the exponential term in (20) is set equal to 1 and (22) is not required. In addition,
because stationarity is required for the validity of many statistical procedures, the distribution of the
change rather than the level is often of interest, e.g., for many financial variables such as stock prices,

exchange rates and interest rates. The transformation of (18) from levels into changes follows from
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observing that, by definition:
x=x,+Ax
where: asxx <b
Hence: -(b-a)<Ax<(b-a)
This leads to the following:

Corollary 1I.1: Distribution for Changes

Given the initial distribution f(x,), the probability distribution for the change in x between 0 and t,
V(Ax,t), is given by:

b-Ax
V(Ax,f)= f S UGx,+Axt | x,)dx, (23q)
when:
0<Ax<(b-a)
b
V(Ax,1)= f S )UGx,+Axt | x,)dx, (23b)
a-Ax
when:
-(b-a)<Ax<0
=0
when:
|Ax| >(b-a)
Given:

U, +Ax,t | x,) =i; rx)d, (x )P, (x,+Ax)expl-A
=
In the absence of boundaries, the distribution for Ax associated with a stochastic process defined by
B = 0 and k equal to a constant is the familiar Ax ~ N(0,0%t).

Corollary II.1 demonstrates that the distribution of changes involves integration of f(x,) and U(*) over
the appropriate regions. Given this, from (20) both the level and change distributions have three
undetermined components which drive the solution: ¢, A, and @,. In turn, ¢, depends onr(x), f(x) and
®_ while r(x) and @, depend fundamentally on the selection of f and k. (The analytical simplification
provided by assuming f(x) = d(x - x,) referred to previously should now be apparent.) Analysis of the

affect of various configurations for B(x), k(x) and f(x,) on U(-) and V(*) can be examined by simulating

these distributions, based on (18)-(23). The resulting procedure requires the eigenvalues, and the
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associated eigenfunctions, to be derived based on the specific parametric configuration selected. By
this method, the restricted and unrestricted distributions for either the level or the change in x can be
derived and compared directly. In this comparison, the restricted distribution will depend on f(x,) while
the unrestricted distribution will not.

Figures 1-3 present results for three different sets of parametric configurations. In all three Figures
the parameters for the distribution of the unrestricted process are specified to be zero-drift (3=0), unit
variance (0=1) process over At =1. Hence, the differences between the two distributions plotted in
Figures 1-3 are due to solely to the presence of the boundaries. Solving for the exact restricted
distribution involves deriving a sufficient approximation to T(x;t=1)." Given the equivalence of the
underlying unrestricted processes, the primary factors to consider in examining the simulations are: the
width of the boundaries; the dispersion and location of f(x,) within the boundaries; and, the effects of
one-sided boundaries. In particular, Figure 1 specifies f(x,) to be a uniform distribution contained
between the upper and lower boundaries, [a,b].*> Figure 2 restricts f(x,) to be uniform over [¢,d] where
a<c<d<b. Figure 3 considers the affect of a one-sided boundary.

The results presented have a number of important implications. Figure 1 confirms that introducing
boundary restrictions on a stochastic process is a feasible method for modelling many empirically
observed distributions, especially those for speculative price changes. Figure 2 illustrates that boundary
restrictions can have a distributional impact even when placed a significant distance above or below
currently admissible levels. Hence, boundaries do not have to be 'close' in order to affect the
distribution. Finally, Figure 3 demonstrates that when only one boundary is effective, the resulting
distribution is asymmetric. This result has important application to the estimation of both production
and arbitrage profit functions. In contrast to previous ad hoc treatments of the distributional effects of
one-sided boundary restrictions, the methods used here permit direct analysis of specific parametric
situations.

6. Proofs of the Propositions

To derive Corollary I.1 it is required that the forward equation (2.1) be transformed into its
canonical form, i.e., in a form which is consistent with the typical presentation of the S-L problem (e.g.,

Boyce and Di Prima [3] chp. 10). Specifically, it has to be shown that (2.1) can be rewritten as:
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1

(5.1) e

[px) U] +4qx) U =1,

where:

r(x) = k(x) expi- f E((—x’/; dx '}
x

p(x) = kx) r(x)
qt) = k, - B,

This can be accomplished by evaluating the derivatives in (2.1) and (5.1), equating coefficients and
solving for r(x), p(x) and q(x) in terms of k(x) and B(x). Karlin and Taylor ([14] p. 194-5) use a similar
approach to address the backward equation where 1(x) is referred to as the "scale density" and R(x) is
proportional to the "speed density". However, the forward equation is better suited to addressing the
reflecting barrier problem.

To express (5.1) as a regular S-L problem now requires a separation of variables solution to the
canonical form of the general type:

(5.2 Ux,t) = exp{-Ad X(x)

Substituting this condition into (5.1) and the appropriately adjusted boundary conditions (2.3) and (2.4)

gives the formulation:

(53) L X, @], + [g0) + AJXG) - 0
@)
subject to:
(5.4) %[k(x) X@)]|._, - B(b) X(b) = 0
5.5) a—ax[k(x) X@)]|,_. - Bl@) Xa) = 0

Given the assumptions on k(x), B(x) required for diffusions and the finiteness of [a,b], it follows that
r(x) and q(x) are continuous and that (5.3)-(5.5) form a regular S-L problem. The solution to this
problem which is given in Proposition I is well-known, e.g., Hille ([12] chp. 8), Birkoff and Rota ([2]
chp. 10). It is readily verified that the eigenfunctions are orthonormal to r(x) and that the @ _(x)'s in
(2.6) are the normalized form of the X 's. Corollary 1.1 now follows from observing that, because the

X, are complete in L,(a,b) then for g(x) € L,(a,b) it is possible to express g in terms of the orthonormal
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basis as:
gk = 2; a, ®,(x)
where:

b
a, = f r(x) g(x) @ (x) dx

a

Using the solution for U(x,t) in (5.2) and comparing ¢, with a, gives the result in Corollary I.1.
To derive Proposition II involves applying a result in Hille [12] where it is shown that the
eigenfunctions Z_ of the S-L system:
[SCp®)], + [QX) + Ax) = 0
with boundary conditions:
%Y, |~ B¥@ =0
YV, gy — 0¥(B) = 0
have exactly n zeroes in the interval [a,b]. The connection with the canonical system given in (5.3)-

(5.5) is given by:

1 1p2
= k —_ —_— —_ —_—
Q= ks 26’6 4 k

y=r2y

Thus, because it is assumed that r > 0, each X and, consequently, ®_ specified in (2.6) must have
exactly n zeroes in [a,b] for n € [0, «). Deriving Proposition Il now requires exploiting the properties
of the eigenvalues.

For A, # 0, it follows from (2.1) and (5.2) that:
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A X = % k() X ] - Bx) X}

., for A # O:

b
fX,,(x) de = — kX)), [, - BOX,B)} - kX ], |,_, - B@X (@}

1
A'n

The integral equals zero because each X, satisfies the boundary conditions. However, because X, has
no zeroes on [a,b], it follows that the value of A,= 0 in order to avoid violating this integral condition.

The need for one of the A = 0 and:

}Xndx¢0

is verified by integrating U(*) in (2.7) from a to b. Because this will involve integrating the ®, (and
hence the X, ), some A must equal zero in order to avoid a contradiction, i.e., U must integrate to 1 over
[a,b]. Finally, because A, = 0, Proposition I requires that A, > 0 for n > 0.

It remains to derive R(x). From A, = 0, it follows:

d
E{[k(x) X], - Bx) X} =0

Integrating from a to x and using the boundary condition gives:
[k(x) XO]x - B(X) Xo =0

This has the solution:
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X, =¥ [k(x)] ! expl f ig—x:; dx} where vy is a constant
x

=y [r@]™!

b 1
@) = [ 7 ¥ [F] 7 d] * (9]

r—l

1

b —
[frta)?

Now using the definition for ¢, from Corollary I.1:
b

¢, = f ) r(x) @, dx

a

1

1

b —
[ ax]®

Hence:

.
¢ Pyx) = R(x) = ——

b
fr'ldx

The specification for K(x,t) in the decomposition follows immediately from the specification of U()
in Corollary L1.
To derive the decomposition result using operator semigroups as stated in Proposition III, recall that

from (4.2) in the text it follows:
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b
G(@) ° G(s) = f G(txex ")G(sx ' x (e "y de”

a

n

o © b
=Y f ® (x)exp[-A 1P (x )P (xYexp[-A ] A(x')r(e )"
Observing:

nn'

b
f Qn(x //)@nl(x //)r(x //) dx// =5

where: 6n,n/=0 if m#n’
o ,=1 if n=n'

nn

Given this, the semigroup property for G is specified:

G@) ° G(s) = i ® (x) exp[-A, 5] @, Ax " S, .
n=0 ’

Y & () expl-A (1+5)] B (x)
n=0

= G(t+s)
The decomposition of G(t) given in (4.3) can now be derived as:
G() = G0 + G'(t)

where:

G = @ (x) exp[—).o(x/)] <I>0(x/) = @ (x) CI>0(x/) since A, = 0

Gliex) = 3 0,09 expl-4,1] &,(x")
Hence, G'(t) © G'(t) = 0 from the orthonormality of the @ ..

Given the properties of G, Proposition III is derived by observing that (4.3) implies orthogonality
of the components of T, i.e., T’(t) T'(t) = 0 follows from the orthogonality of the components of G. T°
has the representation ®,(x) ®,(x') which is time independent, except for a scaling factor. Hence, T'
carries all the time dependence, i.c., (4.5) and (4.6) in the text. (4.1) follows since A, > 0 when n > 0.

To derive the unique fixed point of T(t), observe:



T(r) @, = T° ®, = @,

where: T ®, =0

Thus @, is a fixed point of T (and T°). This fixed point is unique since the {®,} are complete.

17
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NOTES

1. Given the analytical solution for the relevant eigenfunctions and eigenvalues, solving for the
boundary restricted distribution involves solving for T(x;t=1) using (20). Because this involves
an infinite sum, it is not possible to solve for an exact solution. Instead, the simulations take the
first ten terms in the sum. This accounts for almost all of the value of the sum. From Proposition
I, the exponential term will go to 0 as n - .

2. The selection of the uniform distribution for f(-) was based on the result that the ergodic
distribution for a bounded process with no drift is uniform over the interval between the

boundaries.
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