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ABSTRACT

   This paper presents a decomposition result for the transition probability density of a one-dimensional
diffusion process subject to upper and lower constant reflecting barriers.  The decomposition divides
the density into a limiting equilibrium (ergodic) density which is time independent and a power series
of time and boundary dependent transient terms.  The results are derived using both the classical Sturm-
Liouville approach and operator semigroups.
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Distributions for Diffusions Subject to 
Constant Reflecting Barriers: A Decomposition Result

1. Introduction

     While the distributional implications of imposing boundary restrictions on diffusion processes have

long been recognized (e.g., Feller [7]), direct connections between specific types of boundary

restrictions and the associated distributions are available only in special cases (e.g., Giorno, et.al. [8],

[9], Ricciardi and Sacerdote [18], Sacerdote [19], Buonocore, et.al. [4], Nobile, et.al. [16]).  This is in

striking contrast to the numerous specific and general results developed for the unrestricted case.  In

this vein, applications of stochastic processes often assume that the processes of interest are unrestricted

even though there are often legitimate reasons for imposing boundary restrictions.  This predisposition

toward unrestricted processes can partially be attributed to the complexity of solving the Fokker-Planck

equations to identify the distributions associated with bounded processes.  With this in mind, this paper

presents a density decomposition result which can be used to simplify the evaluation of distributional

implications associated with imposing constant reflecting barrier restrictions on diffusions.  The

decomposition is developed by applying the classical Sturm-Liouville solution to an appropriate

specified ODE problem (e.g., Boyce and Di Prima [3]).  The result is also derived using the properties

of the semigroup of operators associated with the forward equation.

     In the following, Section 2 reviews the analytical structure required to develop distributional

solutions for diffusion processes subject to constant reflecting barriers.  Section 3 provides the general

solution to the forward equation applicable to examining the distributional implications of boundary

restrictions.  The essence of the main result is that the probability density can be decomposed into a

limiting equilibrium (ergodic) distribution and a power series of transient terms which are time and

boundary dependent.  The connection to applied distribution estimation is described heuristically.

Section 4 develops the main result in the context of operator semigroups.  Section 5 provides an

application to the problem of numerically simulating probability densities.  Finally, Section 6 provides

the proofs of Propositions contained in the paper.

2. Basic Structure

     The conditions derived here provide an analysis of a specific class of reflecting boundary problems.
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Distributional implications are evaluated by modelling the relevant random variable as a one-

dimensional diffusion process subject to constant upper and lower reflecting barriers.  Starting from

some appropriate initial distribution, the location of the boundaries are found to give rise to transients

which act to redistribute the probability mass of the ergodic distribution.  The diffusion process

framework is used because it imposes a sufficient enough functional structure to develop the theory.

However, the results can readily be extended to other types of distributions, such as the Cauchy, which

are not usually associated with diffusions.  Formally, a diffusion is defined here to be continuous (with

probability one), time homogeneous strong Markov process (e.g., Gihman and Skorohod [10], Karlin

and Taylor [14]), {x(t); t $ t0}, with drift parameter $(x) and infinitesimal variance k(x).  The

associated conditional probability density function will be denoted U(x,t).  The usual regularity

conditions, (e.g., Arnold [1] p. 40, p. 112) are imposed on $, k and U.  

     Specifically, sufficient functional structure is imposed such that the probability density function

U(x,t) for the stochastic variable x, obeys the forward (Fokker-Planck) equation at time t:

(2.1)         Ut = [k(x) U(@)]xx - [ß(x) U(@)]x                    subject to two boundary conditions:

and the initial condition:

where f(x0) is the probability density function associated with x0

and subscripts denote partial differentiation with respect to the listed variable.  This formulation,

permits state, but not time, variation in the parameters k and $. 

     Solving for the U(@) which satisfies (2.1) and (2.3)-(2.5) involves some analytical effort.  In the

method used here, the forward equation has to be transformed into its "canonical form" which allows

that problem to be treated as a regular Sturm-Liouville (S-L) problem (Boyce and Di Prima [3]) where
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"regular" means the separation between the boundaries is finite and k(x) does not vanish at the

boundary.  Hence, in the following it is required that k(x) =/  0 with a # x # b.  While  the solution to

the one reflecting boundary S-L problem is singular, this case can be sometimes be handled within the

two boundary framework by setting the location of f(x0) sufficiently far from one boundary that it has

no "significant" impact on the final result.  In any event, admitting both upper and lower boundaries

permits application of the following classical result relevant to processes subject to boundaries:

Proposition I:

The regular Sturm-Liouville problem has an infinite sequence of real eigenvalues, 80 < 81 < 82 ..... with:

              lim   8n = 4
             n 6 4

To each eigenvalue there corresponds a unique eigenfunction Xn.  The eigenfunctions form a complete
orthonormal system in L2(a,b).

By providing an appropriate basis, Proposition I facilitates the derivation of the decomposition of U(@).

The significance of this approach is that the Sturm-Liouville is an ODE problem; the introduction of

upper and lower reflecting boundaries immediately transforms the problem of solving an SDE into the

more manageable problem of solving an ODE.

     The transformation of U(@) into its canonical form as required for direct application of Proposition

I involves the introduction of the following functions:

As described in Section 6, the r(x) function originates from the derivation of the canonical form while

Mn(x) is the result of normalizing the Xn eigenfunctions.  Given that expressing the problem in its

canonical form permits the application of Proposition I, it follows:

Corollary I.1:

   The unique solution in L2(a,b) to (2.1), subject to the boundary conditions (2.3)-(2.4) and initial
condition (2.5) is, in general form:
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This corollary provides the general solution to the problem of deriving U when the process is subject

to reflecting barriers.  However, while useful, (2.7) is not immediately revealing for many practical

applications because time is allowed to vary over [0,4].

 

3. Main Results

    In physical studies, a central objective of analysis is the ergodic behaviour of a process, i.e., the

limiting behaviour of U as t 6 4.  However, the ergodic distribution is often of little direct interest in,

say, statistical studies.  Instead, attention focuses on the properties of U(@) when (2.7) is formulated over

a specific time interval such as )t=1, the unit time interval.  For example, when x is a price, it is the

price change distribution taken over some specified interval (daily, monthly, annual) which is of

interest.  Given this, properties of the distribution are typically "identified" by examining the behaviour

of functions of the associated random variables, taken over t , [0,T] where the sample set can be either

discrete or continuous.  This often involves using a likelihood function derived from a series of one-

step ahead distributions (e.g., Lo [15], Feigen [6]).  Given this, it is possible to develop relevant results

for the U(@)'s associated with different types of boundary restrictions.  Testable restrictions can be

formulated about the shape and iid behaviour of the relevant distributions.

     As stated, (2.7) cannot be readily applied to the types of distributions typically encountered in

empirical studies.  Further, simplification is required.  This leads to the following fundamental result:

Proposition II:  Density Decomposition

     The transition probability density function for x at time t (U(x,t)) can be expressed as the sum of a
limiting equilibrium density which is independent of time and a power series of transient terms which
are boundary and time dependent, i.e.:

(3.1)                U(x,t)  = R(x) + K(x,t)                  
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If the normalizing constant referred to in the Proposition:

is ignored, then the ergodic distribution can also be said to be independent of the boundaries.  In many

cases, Proposition II provides sufficient structure to analyze the distributional implications of reflecting

barriers.  In particular, because the series given in (3.5) involves powers of exp{-8n}, the terms in the

sum will decrease monotonically as n 6 4 permitting truncation of the series past some point.

    To illustrate some specific cases, consider the variety of  limiting equilibrium distributions R(x)

generated by appropriate choices of $(x), k(x) and [a,b].  For example, if $(x) = : and k(x) = ½F2 then

R(x) is exponential.  If : = 0, the exponential reduces to a uniform over (-4 < a < b < 4).  A normal

distribution requires k(x) = ½F2 and $ = -:(x - x0).  A lognormal requires k(x) = ½F2x and $ = -:(ln(x)

- ln(x0)).  Other cases follow appropriately.  If the process is unrestricted and constant parameter, the

one-step-ahead ()t =1) distribution will replicate at each t , [0,T] and the appropriately specified

process will be iid.  With boundary restrictions, the distributional impact enters through K(x,t).  From

(3.3) the total mass of the transient term is zero.  The transient acts to redistribute the mass of the

equilibrium distribution, thereby causing a change in shape.  The specific degree and type of alteration

depends on the relevant assumptions made about the parameters, initial functional forms and selection
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of t.

      To see heuristically how the transients and ergodic density interact, consider a system constrained

by upper and lower boundaries which has been unperturbed for a sufficiently long time such that U(@)

has settled down to R(x).  If the boundaries are then moved, this will induce transients which act to

redistribute probability mass at each point in time changing the observed shape of U(@).  In the long run,

the transients die away and U(@) returns to the original (except for a scaling factor) ergodic distribution.

Using the eigenvalues derived from the S-L problem it is possible to numerically simulate the changing

shape of U(@) over time.  With appropriate selection of f(x0), it is possible to extend this approach to

examining processes, such as the "-stable, which have upper moments for the unrestricted process

which vanish as t 6 4 but still have defined eigenvalues.  By imposing boundaries on the paths of these

processes, it is possible to evaluate the distributional impact of imposing boundary restrictions.

4. The Semigroup Connection

     The objective of this Section is demonstrate that Proposition II can also be developed using the

semigroup properties of differential operators to derive a specific representation for f,U , L2(S,:),

defined over the bounded state space S (x , S) with some implied measure :.  This formulation permits

the representation of U(x,t) by specifying a complete orthonormal basis provided by the eigenfunctions

of the D operator associated with the forward equation:

Significantly, in applying the operator semigroup approach, D does not necessarily have to be a

differential operator in order to form the eigenfunction expansion.  However, the completeness of the

eigenfunctions is essential.  Given the initial conditions (2.5) and the boundary conditions (2.3)-(2.4)

which restrict the domain of U, Dom(U) f [a,b], in Corollary I.1 the solution to U(x,t) was given by:
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In terms of the operator D, in (4.1) Mn is the function which results from normalizing the eigenfunctions

of D; r(x) is a weighting function depending directly on :.

      Given this, T(t) can be defined as an integral operator with kernel G(t).  In the presence of boundary

restrictions at a and b, the integral operation is specified:

Significantly, G obeys the semigroup property: G(t) B G(s) = G(t+s).  Further, because G is self-adjoint

(e.g., Reed and Simon [17]), G has the decomposition:

It follows that the decomposition is orthogonal, i.e., G1(t) B G0(t) = 0.  This leads to the following:

Proposition III: Decomposition of T

     The semigroup of bounded linear operators {T(t)} which generate a solution to (4.1) subject to the
initial condition U(x,0) = f(x0) and other well-posed boundary and initial conditions, has a unique
orthogonal decomposition:

                 T(t) = T0(t) + T1(t)

  where:  T0(t) T1(t) = 0
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Conditions (4.4)-(4.6) provide fundamental information about the properties of T(t).  Given the strict

contraction semigroup property for T(t), Proposition III can be used to show that there is a unique fixed

point of T which is T0.  Formally, when G is self-adjoint the 8=0 eigenvalue is the invariant of the

semigroup.  In turn, this invariant admits the (normalized) inverse of the density derived with respect

to :.  This invariant is directly related to R(x) in (3.1).

    Similar to the implications of Proposition II, (4.4)-(4.6) demonstrate that T is composed of a time

invariant operator (4.4) and a transient operator (4.6), i.e., the transient operator dies out over time.  In

a statistical context, interpreting the invariant of the semigroup as a density leads directly to specifying

U(x,t) as a transition probability density.  In this case, T0 is the ergodic density while T1 acts to

redistribute the ergodic density at a given point in time.  When the discrete spectrum of the operator

is generated by assuming a combination of bounded Dom(U) and self-adjointness of D, these transient

terms arise from the boundary restrictions being imposed on the underlying process.  (Of statistical

importance, the presence of boundaries on Dom(U) typically results in a loss of the iid property.)  It

follows that there may be significant analytical advantages to expressing practical applications in terms

of bounded Dom(U).  In particular, Proposition III provides a method for extending results developed

for unrestricted stochastic processes to the restricted process case.  

5. Applications of the Decomposition

      In financial economics, the function T(x,t=1) is of specific interest because data is typically sampled

at fixed frequencies.  Statistics are formed from functions of sums of the resulting random variables.

In this case, the t in the exponential term in (20) is set equal to 1 and (22) is not required.  In addition,

because stationarity is required for the validity of many statistical procedures, the distribution of the

change rather than the level is often of interest, e.g., for many financial variables such as stock prices,

exchange rates and interest rates.  The transformation of (18) from levels into changes follows from
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observing that, by definition:

This leads to the following:

Corollary II.1: Distribution for Changes

Given the initial distribution f(x0), the probability distribution for the change in x between 0 and t,
V()x,t), is given by:

In the absence of boundaries, the distribution for )x associated with a stochastic process defined by

$ = 0 and k equal to a constant is the familiar )x - N(0,F2t).

    Corollary II.1 demonstrates that the distribution of changes involves integration of f(x0) and U(@) over

the appropriate regions.  Given this, from (20) both the level and change distributions have three

undetermined components which drive the solution: cn, 8n, and Mn.  In turn, cn depends on r(x), f(x) and

Mn while r(x) and Mn depend fundamentally on the selection of $ and k.  (The analytical simplification

provided by assuming f(x) = *(x - x0) referred to previously should now be apparent.)  Analysis of the

affect of various configurations for $(x), k(x) and f(x0) on U(@) and V(@) can be examined by simulating

these distributions, based on (18)-(23). The resulting procedure requires the eigenvalues, and the
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associated eigenfunctions, to be derived based on the specific parametric configuration selected.  By

this method, the restricted and unrestricted distributions for either the level or the change in x can be

derived and compared directly.  In this comparison, the restricted distribution will depend on f(x0) while

the unrestricted distribution will not.

     Figures 1-3 present results for three different sets of parametric configurations.  In all three Figures

the parameters for the distribution of the unrestricted process are specified to be zero-drift ($=0), unit

variance (F=1) process over )t =1.  Hence, the differences between the two distributions plotted in

Figures 1-3 are due to solely to the presence of the boundaries.  Solving for the exact restricted

distribution involves deriving a sufficient approximation to T(x;t=1).1  Given the equivalence of the

underlying unrestricted processes, the primary factors to consider in examining the simulations are: the

width of the boundaries; the dispersion and location of f(x0) within the boundaries; and, the effects of

one-sided boundaries.  In particular, Figure 1 specifies f(x0) to be a uniform distribution contained

between the upper and lower boundaries, [a,b].2  Figure 2 restricts f(x0) to be uniform over [c,d] where

a < c < d < b.  Figure 3 considers the affect of a one-sided boundary.

     The results presented have a number of important implications.  Figure 1 confirms that introducing

boundary restrictions on a stochastic process is a feasible method for modelling many empirically

observed distributions, especially those for speculative price changes.  Figure 2 illustrates that boundary

restrictions can have a distributional impact even when placed a significant distance above or below

currently admissible levels.  Hence, boundaries do not have to be 'close' in order to affect the

distribution.  Finally, Figure 3 demonstrates that when only one boundary is effective, the resulting

distribution is asymmetric.  This result has important application to the estimation of both production

and arbitrage profit functions.  In contrast to previous ad hoc treatments of the distributional effects of

one-sided boundary restrictions, the methods used here permit direct analysis of specific parametric

situations.

6. Proofs of the Propositions

     To derive Corollary I.1 it is required that the forward equation (2.1) be transformed into its

canonical form, i.e., in a form which is consistent with the typical presentation of the S-L problem (e.g.,

Boyce and Di Prima [3] chp. 10).  Specifically, it has to be shown that (2.1) can be rewritten as:
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where:

This can be accomplished by evaluating the derivatives in (2.1) and (5.1), equating coefficients and

solving for r(x), p(x) and q(x) in terms of k(x) and $(x).  Karlin and Taylor ([14] p. 194-5) use a similar

approach to address the backward equation where r(x) is referred to as the "scale density" and R(x) is

proportional to the "speed density".  However, the forward equation is better suited to addressing the

reflecting barrier problem.

    To express (5.1) as a regular S-L problem now requires a separation of variables solution to the

canonical form of the general type:

Substituting this condition into (5.1) and the appropriately adjusted boundary conditions (2.3) and (2.4)

gives the formulation:

subject to:

Given the assumptions on k(x), $(x) required for diffusions and the finiteness of [a,b], it follows that

r(x) and q(x) are continuous and that (5.3)-(5.5) form a regular S-L problem.  The solution to this

problem which is given in Proposition I is well-known, e.g., Hille ([12] chp. 8), Birkoff and Rota ([2]

chp. 10).  It is readily verified that the eigenfunctions are orthonormal to r(x) and that the Mn(x)'s in

(2.6) are the normalized form of the Xn's.  Corollary I.1 now follows from observing that, because the

Xn are complete in L2(a,b) then for g(x) , L2(a,b) it is possible to express g in terms of the orthonormal
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basis as:

Using the solution for U(x,t) in (5.2) and comparing cn with an gives the result in Corollary I.1.

     To derive Proposition II involves applying a result in Hille [12] where it is shown that the

eigenfunctions Zn of the S-L system:

have exactly n zeroes in the interval [a,b].  The connection with the canonical system given in (5.3)-

(5.5) is given by:

Thus, because it is assumed that r > 0, each Xn and, consequently, Mn specified in (2.6) must have

exactly n zeroes in [a,b] for n , [0, 4).  Deriving Proposition II now requires exploiting the properties

of the eigenvalues.

     For 8n =/  0, it follows from (2.1) and (5.2) that:
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The integral equals zero because each Xn satisfies the boundary conditions.  However, because X0 has

no zeroes on [a,b], it follows that the value of 80 = 0 in order to avoid violating this integral condition.

The need for one of the 8 = 0 and:

is verified by integrating U(@) in (2.7) from a to b.  Because this will involve integrating the Mn (and

hence the Xn), some 8 must equal zero in order to avoid a contradiction, i.e., U must integrate to 1 over

[a,b].  Finally, because 80 = 0, Proposition I requires that 8n > 0 for n > 0.

     It remains to derive R(x).  From 80 = 0, it follows:

Integrating from a to x and using the boundary condition gives:

This has the solution:
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Now using the definition for c0 from Corollary I.1:

Hence:

The specification for K(x,t) in the decomposition follows immediately from the specification of U(@)

in Corollary I.1.

     To derive the decomposition result using operator semigroups as stated in Proposition III, recall that

from (4.2) in the text it follows:
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Observing:

Given this, the semigroup property for G is specified:

The decomposition of G(t) given in (4.3) can now be derived as:

Hence, G0(t) " G1(t) = 0 from the orthonormality of the Mn.

     Given the properties of G, Proposition III is derived by observing that (4.3) implies orthogonality

of the components of T, i.e., T0(t) T1(t) = 0 follows from the orthogonality of the components of G.  T0

has the representation M0(x) M0(x') which is time independent, except for a scaling factor.  Hence, T1

carries all the time dependence, i.e., (4.5) and (4.6) in the text. (4.1) follows since 8n > 0 when n > 0.

To derive the unique fixed point of T(t), observe:
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Thus M0 is a fixed point of T (and T0).  This fixed point is unique since the {Mn} are complete.
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1.  Given the analytical solution for the relevant eigenfunctions and eigenvalues, solving for the
boundary restricted distribution involves solving for T(x;t=1) using (20).  Because this involves
an infinite sum, it is not possible to solve for an exact solution.  Instead, the simulations take the
first ten terms in the sum.  This accounts for almost all of the value of the sum.  From Proposition
I, the exponential term will go to 0 as n 6 4. 

2.  The selection of the uniform distribution for f(@) was based on the result that the ergodic
distribution for a bounded process with no drift is uniform over the interval between the
boundaries.

NOTES


