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ABSTRACT

Available studies have not provided a satisfactory answer to the problem of making
international comparisons of port efficiency. This study applies data envelopment analysis
(DEA) to provide an efficiency ranking for five Australian and eighteen other international
container ports. While DEA has been applied to a wide number of different situations where
efficiency comparisons are required, this technique has not previously been applied to ports.
The DEA technique is useful in resolving the measurement of port efficiency because the
calculations are nonparametric and do not require specification or knowledge of a priori
weights for the inputs or outputs, as is required for estimation of efficiency using production
functions.
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Measuring Port Efficiency:
An Application of Data Envelopment Analysis

1. Introduction

In order to support trade oriented economic development, port authorities have increasingly
been under pressure to improve port efficiency by ensuring that port services are provided on
an internationally competitive basis. Ports form a vital link in the overall trading chain and,
consequently, port efficiency is an important contributor to a nation's international
competitiveness, €.g., Tongzon (1989). UNCTAD (1987) emphasized the need to improve and
measure port efficiency and concluded that available studies on port productivity have overall
been unsatisfactory. The UNCTAD report goes on to say that any effort to analyze port
efficiency is formidable due to the sheer number of parameters involved, as well as the lack
of up-to-date and reliable data. At times, the inability to differentiate relevant factors
contributing to port efficiency has resulted in unnecessary collection of significant amounts of
data which were later found to be of limited use, thus resulting in a wastage of port
management resources (Tongzon, 1995).

This study is concerned with the problem of making international comparisons of port
efficiency. Since there are a number of inter-related aspects and activities in the port which
cannot be captured by one single measure or indicator, port authorities have developed a
number of efficiency indicators to use as a basis for classifying ports in terms of efficiency.
The presence of different indicators raises problems for evaluating and comparing overall port
efficiency across ports. For example, the straightforward method of using simple arithmetic
means of the various efficiency measures is not suitable due to differences in the importance
of the measures used. This paper proposes the use of Data Envelopment Analysis (DEA) for
measuring and classifying port efficiency. This technique has been applied to a wide number
of different situations where efficiency comparisons are required. However, the technique has
not previously been applied to ports. In the following, Section 2 provides a literature review
and a discussion of available measures of port efficiency. Section 3 outlines DEA and gives
a brief review of related studies which have used this technique. Section 4 provides the

empirical results for DEA applied to 23 container ports. Finally, Section 5 summarizes the



main results in the paper.

Section 2. Port Output and Port Input Measures

Various studies have compared ports using selected performance and efficiency criteria.
Examples from Australia include the Australian Bureau of Industry Economics (1993) and
Australian Transport Advisory Council (1992). In DEA analysis, being efficient involves
combining available inputs to achieve a higher level of outputs than comparable Data
Management Units (DMUs). In this study, ports are the relevant DMUs. Using DEA to
measure efficiency requires port outputs and inputs to be accurately specified. In contrast to
conventional econometric techniques, an important feature of DEA is that more than one output
measure can be specified. A number of different measures of port output are available,
depending on which features of port operation are being evaluated. This study uses two output
measures. The first output measure is the total number of containers loaded and unloaded.
In addition, because the container handling aspect of port operation constitutes the largest
component of total ship turnaround time, the speed of moving cargoes off and onto ships at
berth, measured as the amount of cargo handled per berth hour, is the second measure of port
output selected. Improving efficiency in this area is consistent with port authority intentions
of maximizing berth utilization, a factor which will influence both port charges imposed on
shipowners and the actual throughput handled.

The use of two output measures is useful because port output, measured using both the
number of containers handled and the amount of cargo handled per berth hour, allows for
various input factors to be identified. One fundamental input is the number of ship calls which
is important to the number of containers handled as it influences the volume of cargo which
can be moved through a port. The number of ship calls depends on both the geographical
location of a port and ship sizes. Transhipment ports such as Singapore, Hong Kong,
Rotterdam and Felixstowe are different from the Australian feeder ports such as Melbourne
or Sydney which largely support local trade. The transhipment role carries with it benefits in

storage area utilization and other areas of the port operation which may not be available in
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feeder ports. The number of containers handled is also affected by the quality and quantity of
support infrastructure provided, such as the number of container berths and gantry cranes.
Because the number of quay cranes is closely related to another input measure (the number of
TEUs/per quay crane hour) only the number of gantry cranes is used an input measure in this
study.'

In addition to the factors driving the size of port output measured using the number of
containers handled, the efficiency of producing cargo throughput, the amount of cargo handled
per berth hour, is influenced by other factors. In particular, the proportion of 40 ft. to 20 ft.
containers, the container mix, is important. Larger ports, such as Singapore, tend to handle
a higher proportion of 40 ft. to 20 ft. containers than smaller ports such as Brisbane and
Fremantle. Although a 40 ft container is equivalent to 2 twenty-foot containers, it takes
approximately the same time to handle as a 20 ft container. Hence, in order to more accurately
account for the amount of cargo handled per berth hour, the number of twenty-foot container
equivalent units (TEUs) is used instead of the total number of containers. The TEU/berth hr.
output measure is then adjusted by taking the container mix to be an input. Work practices
which produce delays affecting stevedoring can also affect port output. These delays could be
due to meal breaks, equipment breakdown, perceived ship problems or weather. This input
is measured using the difference between the time the ship is at berth and the gross working
time for stevedoring gangs.

Quay crane efficiency, measured using the number of TEUs handled per quay crane hour
is another indicator of how well working time is being used. There are two areas of crane
efficiency: crane hours per gross working hour and effectiveness of crane operation. Crane
hours depend on the number of cranes used to load/unload a vessel as well as on the hours
worked per day. In some ports up to three cranes may be used to unload large ships while in
other ports only one or two cranes are used. Ramani (1996) provides a detailed discussion of
the logistics of crane scheduling and cargo container unloading and loading. This study uses
the number of TEUs per crane hour to measure the efficiency of crane usage. The final input

measure selected is port charges. This variable is used as a proxy to capture a number of
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factors, such as the presence of port competition and the quality of port management. Even
though port charges account for a low proportion of overall costs of international trading,
differentials in ports charges do not have to be large to impact the port choice decision. For
example, marginally higher port charges in Rotterdam relative to Zeebrugge would cause

container cargo bound to and from certain European areas to shift port transshipment location.

Section 3. Data Envelopment Analysis

Data Envelopment Analysis (DEA) is an efficiency evaluation model based on mathematical
programming theory. DEA offers an alternative to classical statistics in extracting information
from sample observations. In contrast to parametric approaches such as regression analysis
which fit the data through a single regression plane, DEA optimizes each individual
observation with the objective of calculating a discrete piece-wise frontier determined by the
set of Pareto efficient Decision Management Units (DMUs).? In other words, the focal point
of DEA is on individual observations as opposed to single optimization statistical approaches
which focus on averages of parameters. In the present application, DEA refers to each port
as a DMU, in the sense that each is responsible for converting inputs into outputs. DEA
analysis can involve multiple inputs as well as multiple outputs in its efficiency evaluation.
Furthermore, DEA calculations are nonparametric and do not require specification or
knowledge of a priori weights for the inputs or outputs. For many applications, these features
make DEA a more flexible tool as compared to other conventional efficiency measures derived
from stochastic production frontier or economic value added (EVA), which are based on
production function estimation involving many inputs but only one output.

Since its introduction by Charnes, Cooper, and Rhodes (1978), there have been many
applications of DEA. Some applications have involved efficiency evaluation of organizations
with characteristics similar to ports, such as hospitals (Banker et al. 1986), schools (Ray 1991),
courts (Lewin et al. 1982), post offices (Deprins et al. 1984), and air force maintenance units
(Charnes et al. 1985). DEA provides the flexibility to permit unconventional variables such

as the number of students graduated, number of patients served, even journal ranking (Burton
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and Phimister 1995) to be used for efficiency evaluation. DEA has also been applied in the
transportation sector to airlines (Banker and Johnston 1994, Charnes, Galleous and Li 1997),
and railways (Oum and Chunyan 1994). A detailed bibliography related to DEA (1978-1992)
can be found in Charnes et al. (1995, Chp. 22). Since the early work of Charnes, Cooper and
Rhodes (CCR), there have been a number of extensions to the DEA model. For example,
Charnes et al. (1985) introduced window analysis to handle panel data sets involving pooled
cross section and time series observations.

The concept of DEA is developed around the basic idea that the efficiency of a DMU is
determined by its ability to transform inputs into desired outputs. This concept of efficiency
was adopted from engineering which defines the efficiency of a machine/process as
Output/Input < 1. In this approach, efficiency is always less than or equal to unity as some
energy loss will always occur during the transformation process. DEA generalizes this single
output/input technical efficiency measure to multiple outputs/inputs by constructing a relative
efficiency measure based on a single "virtual" output and a single "virtual" input. The efficient
frontier is then determined by selecting DMUSs which are most efficient in producing the virtual
output from the virtual input. Because DMUs on the efficient frontier have an efficiency score
equal to 1, inefficient DMUs are measured relative to the efficient DMUs. The efficiency
ranking is relative to other DMUs. It is not possible to determine if DMUs judged to be
efficient are optimizing the use of inputs to produce outputs.

More formally, assume that there are » DMUs to be evaluated. Each DMU consumes
varying amounts of m different inputs to produce s different outputs. Specifically, DMU;
consumes amounts X; = {x;} of inputs (i = 1,....., m) and produces amounts Y; = {y,} of
outputs (= 1,....., s). The s x n matrix of output measures is denoted by Y, and the m X
n matrix of input measures is denoted by X. Also, assume thatx; > 0andy,> 0. Consider
problem of evaluating the relative efficiency for any one of the n DMUs, which will be
identified as DMU,. Relative efficiency for DMU, is calculated by forming the ratio of a
weighted sum of outputs to a weighted sum of inputs, subject to the constraint that no DMU

can have a relative efficiency score greater than unity. Symbolically:
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where u, and v, are weights assigned to input » and output i respectively.
For this fractional programming problem with a potentially infinite number of optimal
solutions, CCR (1978) were able to specify an equivalent Linear Programming problem (LP).

This requires introduction of a scalar quantity (6) to adjust the input and output weights:
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where the value of A, is the relative efficiency of DMU, and e is positive constant, called the
non-Archimedian infinitesimal, which is introduced to facilitate solving of the LP problem.
In DEA, this LP is known as the CCR Model, as it was developed by Charnes Cooper and
Rhodes.

In addition to the CCR DEA model, two other DEA models are also often associated with
the DEA methodology (e.g., Ali et al. 1995): the BCC model and the Additive model. The

models differ mainly in their envelopment surface orientation and projection path to the
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efficient frontier for an inefficient DMU. The CCR model results in a constant returns to
scale, piece-wise linear envelopment surface with both input and output orientations for
projection paths. The BCC model provides a variable returns to scale, piece-wise linear
envelopment surface, which is similar to Additive model. However, its projection path has
both input and output orientations, which differs from Additive model. The Additive model
was introduced by Charnes et al. (1985). The envelopment surface derived from the Additive
model has a piece-wise linear, variable returns to scale property. The model is based on the
concept of a Pareto efficient (minimum) function. For any particular one of the n DMUs, again

denoted by DMU,, the LP for the Additive model is:

Max Q, =p" Y, - 0" X, +y,

B, v, 4,
Subject to:

'Y -0'X+ y,1 < 0
-u', -o" < -1 (where 1 is a column vector of 1)

The presence of an unconstrained vector variable vy, in the objective function results in variable
returns to scale for the Additive model, as opposed to constant returns to scale in the CCR
model.” When y, = 0, the Additive model reduces to the CCR model.

The term "relative efficiency” is used in DEA because the efficiency of each DMU is
calculated with reference to all the other DMUs that are being selected for assessment. For
multiple inputs and/or outputs, the envelopment surface will be multidimensional. All those
DMUs that lie on the frontier have an efficiency score of 1 and are considered DEA efficient,
while those below will be classified as DEA inefficient and have efficiency scores of less than
1. For an inefficient DMU, the facet is the combination of efficient DMUSs which are used to
determine the relative inefficiency. The relative weightings of the efficient DMUs in the facet,
the lambdas, are available for the Additive model, because the convexity constraint imposes
the condition that the sum of the lambdas equals 1. No such restriction is available for the
CCR model. One useful feature of DEA is the power to identify the sources and amount of

wastage in inputs, or shortfalls in outputs, for each DEA-inefficient DMU. The level of
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inefficiency is determined by comparison to the facet located on the efficient frontier. In
practice, the sources of inefficiency can be important piece of information as it can enable
managers to identify the problem areas for these inefficient DMUs and provide precise

information about the corrective efforts required to achieve efficient performance.

Section 4. Empirical Results
A. Sample Selection

Due to the large number of ports and substantive differences in the types of cargoes
handled, only the performance in handling containerised cargoes across selected ports is
examined.* Initially, thirty container ports were selected based on size, geographical location,
and data availability. Questionnaires requesting 1991 data on port performance and efficiency
were sent out to these selected ports. Due to reasons such as confidentiality and lack of data,
only 23 of the sampled ports provided usable information. The survey results were
supplemented with data from secondary sources, such as the Port of Melbourne Comparative

Port Study (1992) and the Bureau of Industry Economics (Australia) International Performance

Indicators in the Waterfront (1993). Lloyd's Ports of the World (1993) and Containerisation

International Yearbook (1992) also provided information. The sampled ports, together with

summary information on the statistics collected are given in the Appendix, Tables A.1 and
A.2.

The DEA empirical results use two output measures: TEUBH, the number of twenty foot
container equivalent units (TEUs) handled per berth hour, and TH, the total number of
containers handled per year, both 20 and 40 foot. As discussed in Section 2, TH treats 40 and
20 ft. containers equivalently, while TEUs/per berth hour accounts for the amount of cargo
handled by adjusting for the difference between container sizes. The input measures used are:
CONMIX, the mixture of twenty-foot and forty-foot containers (proportion of forty foot
containers); BRLWT, average delays in commencing stevedoring, difference between the berth
time and gross working time; TEUCH, average quay crane productivity represented by the

number of containers lifted per quay crane hour; CRANE, the number of gantry cranes present
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at the port; FS, the frequency of ship calls (containers ships only); and, CH, the average
government port charges per container. The DEA software employed was developed at the

Centre for Cybernetic Studies, University of Texas and is described in Assad (1986).

B. Empirical Results

Without precise information on the returns to scale of the port production function, two
sets of results, for the CCR and Additive DEA models, are presented and discussed. The
efficiency rankings calculated using these two approaches are given in Table 1. Comparison
of these results reveals that the CCR model identifies more substantially more inefficient ports
(13 vs. 4) than the Additive model and, ignoring a marginal increase for Jakarta, attributes a
higher level of inefficiency to those ports which are judged to be inefficient using both
methods. Following the discussion in Section 3, this is not surprising, as the CCR model fits
a linear production technology and the Additive model features variable returns to scale, which
is more flexible and will, typically, require a larger number of ports to define the efficiency
frontier. An analogy to conventional economics would feature a linear production possibilities
frontier with a piecewise convex frontier (e.g., Favero and Papi 1995, p.387). The linear
frontier would be tangent to the convex frontier only over a segment, being above the convex
frontier elsewhere.

Interpreting the results of Table 1 depend on assumptions made about the production
technology for ports. Ports that are judged to be inefficient with variable returns to scale will
also be inefficient with linear production relations, but not the converse. The two most
inefficient ports identified with the Additive model, Fremantle and Manila, are also found to
be the most inefficient using CCR. The other two ports identified as inefficient using the
Additive model, Jakarta and Montreal, improved rankings somewhat under CCR, because a
number of ports, such as Baltimore, Le Havre, and Wellington, had lower relative efficiency
scores. The primary characteristic of the four ports judged to be inefficient with both DEA
models is size; these four ports are among the smallest in terms of number of containers

handled. The ten out of twenty-three ports found to be efficient using CCR, the group of most
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efficient ports, does not have any discernible characteristics. Both large ports, such as
Singapore and Hong Kong, and small ports, such as Brisbane and Bombay, are included in the
group. When found to be inefficient using CCR, large ports such as Rotterdam and
Zeebrugge, do not exhibit large deviations from the efficient frontier.

In addition to providing efficiency rankings, DEA also provides other information relevant
for the inefficient DMUs. In particular, DEA identifies the efficient facet being used for
comparison as well a combination of the inputs which are being inefficiently utilized and the
deviation of specific outputs from the efficient level. Because efficient DMUs do not have any
slack, this information is only of interest for inefficient DM Us. Table 2 provides the Additive
model results for the inefficient DMUs, as well as the facet port numbers and associated
lambdas. As mentioned in Section 3, for the Additive model the convexity constraint requires
the lambdas to sum to one, permitting the lambdas to be interpreted as relative weights.
Higher lambda values indicate which efficient port was more important in determining the
inefficiency of the particular inefficient DMU. For all the inefficient ports except Fremantle,
port #16, Bombay, has the highest weight in the facet. Sensitivity analysis (not reported) was
conducted to determine if dropping Bombay from the sample had a significant impact on the
efficiency ranking. Excluding Manilla, which became an efficient port, the relative efficiency
of the other three ports did not change appreciably. Other ports replaced Bombay in the facet.

Interpreting the information from the facet is more straight forward than evaluating the
sources of inefficiency. For example, the inputs levels at Fremantle were roughly consistent
with efficient levels, but output, both in terms of TEUBH and TH could have been
significantly higher. Presumably, this indicates that the port, when loading and unloading
ships, is efficient, but there is an insufficient amount of traffic arriving at the port, resulting
in idle capacity. Jakarta provides different information, as all the inputs except CRANE are
inefficient. Higher levels of both outputs could be achieved, with improvements in the usage
of inputs. However, some of the inputs variables are not directly controllable. The frequency
of ship calls depends on the types of ships using the port. The sizable difference between the

observed and efficient level indicates that the types of ships which are using Jakarta tend to
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have too small a number of containers per ship to unload. While it may be possible for a port
to encourage larger ships to use port facilities, it is incumbent on the port authority to support
the ships which do use the port. All the ports had a level of port charges which were too high.
However, sensitivity analysis (not reported) indicated that dropping this variable did not
change the efficiency rankings substantially.

Table 3 provides the CCR DEA model results for the same ports as in Table 2. Comparison
of Table 2 and 3 results reveals some differences. The facets are different. Though port #22,
Singapore, still appears in all facets, Bombay is no longer in the facet for Fremantle and
Montreal. Another difference is in the identified sources of inefficiency. While the Additive
model identified efficient output and input levels, with the exception of Montreal, the CCR
model has emphasized only input levels. This type of difference is sample specific and does
not always occur when comparing Additive and CCR model results. Heuristically accounting
for the differences in emphasis between input and output inefficiencies, the CCR and Additive
models do tend to identify similar sources of inefficiencies in inputs. For example, the
Additive Model finds the efficient level for FS is 1449 vs. the observed 12106 while the CCR
model finds the efficient level to be 2866. Table 4 provides CCR results for ports which were
found to be efficient with the Additive model but inefficient with CCR. A similar bias toward
emphasizing input inefficiencies and taking outputs to be efficient is also evident in these

results.

Section 5. Conclusions

Available studies of port efficiency have not provided a satisfactory answer to the problem
of making efficiency comparisons across ports. With considerable success, this study applies
DEA analysis to evaluate relative port efficiency. The efficiency results obtained depend on
the type of DEA model employed which, in turn, depends on an assumption made about the
returns to scale properties of the port production function. If a linear technology is assumed,
then three of the five Australian ports examined are found to be inefficient in a 1991 sample

of 5 Australian and 18 other international ports. One Australian port, Fremantle, is found to
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be the most inefficient port in the sample using both constant or variable returns to scale
assumptions. Two Australian ports, Sydney and Brisbane were found to be efficient
independent of the returns to scale assumption, indicating that port size alone is not the primary
determinant of port efficiency. Adelaide was found to be efficient with variable returns to
scale, but had one of the lowest efficiency scores with CCR. The remaining Australian port,
Melbourne, also exhibited a sizable change in efficiency score, being efficient with variable
returns to scale and having an efficiency score of .5778 under CCR.

The primary contribution of this study is methodological. It demonstrates that DEA
provides a viable method of evaluating relative port efficiency. DEA has recently been
successfully applied to a number of different economic efficiency measurement situations. The
technique offers a significant alternative to classical econometric approaches to extracting
efficiency information from sample observations, such as the use of stochastic frontier
production functions. Important features of DEA are that the technique is nonparametric and
that more than one output measure can be specified. In the case of port efficiency, the ability
to handle more than one output is particularly appealing because a number of different
measures of port output are available, depending on which features of port operation are being
evaluated. In addition to providing relative efficiency rankings, DEA also provides results on
the sources of input and output inefficiency, as well as the ports which were used for the
efficiency comparison. The ability to identify the sources of inefficiency could be useful to
port authority managers in inefficient ports, acting as a guide to focusing efforts at improving

port performance.



14
Bibliography

Ali, 1., C. Lerme, and L. Seiford (1995), "Components of Efficiency Evaluation in Data
Envelopment Analysis", European Journal of Operational Research: 462-73.

Assad M. (1986), "Data Envelopment Analysis Software for Microcomputers: CCRI,
Additive, MinMax, Summary, Window", Research Report CCS 538, Centre for Cybernetic
Studies, University of Texas.

Australian Bureau of Industry Economics (1993), International Performance Indicators in the
Waterfront. Research Report 47.

Australian Transport Advisory Council (1992), Port Performance Indicators.

Banker R. D., Conrad R. F., Strauss R. P. (1986), "A Comparative Application of DEA and
Translog Methods: An Illustrative Study of Hospital Production", Management Science, 32
(1): 30-44.

Banker R., Johnston H. (1994), "Evaluating the Impacts of Operating Strategies on Efficiency
in the U.S. Airline Industry", in Data Envelopment Analysis: Theory, Methodology., and
Application, Kluwer Academic Publishers.

Bowlin W. F., Charnes A., Cooper W. W., Sherman H. D. (1985), "Data Envelopment
Analysis and Regression Approaches to Efficiency Estimation and Evaluation", Annals of
Operations Research: 113-138.

Burton, M. and E. Phimister (1995), "Core Journals: A Reappraisal of the Diamond List",
Economic Journal 105: 361-73.

Charnes A., Cooper W. W., Rhodes E. (1978), "Measuring the Efficiency of Decision Making
Units", European Journal of Operational Research: 429-444.

Charnes A., Cooper W. W., Clark T., Golany B. (1985), "A Developmental study of Data
Envelopment Analysis in Measuring the Efficiency of Maintenance Units in the U.S. Air
Forces", Annals of Operations Research: 95-112.

Charnes, A., A. Galleous and Li Hongyu (1997), "Robustly Efficient Parameter Frontiers: An
Approximation via the Multiplicative DEA model for Domestic and International Operations
of the Latin American Airline Industry", European Journal of Operational Research
(forthcoming).

Charnes A., Cooper W. W., Lewin A. Y., Seiford L. M. (1995), Data Envelopment Analysis:
Theory, Methodology, and Application, Boston: Kluwer.

Deprins D., Simar L., Tulkens H. (1984), "Measuring Labor-Efficiency in Post Offices", in
M. Marchand, P. Pesticau, H. Tulkens (eds.), The Performance of Public Enterprises:
Concepts and Measurement, North-Holland: Elsevier Science Publishers B. V.: 243-267.

Favero, C. and L. Papi (1995), "Technical Efficiency and Scale Efficiency in the Italian
Banking Sector: a Non-Parametric Approach", Applied Economics 27: 385-95.

Gong, B. and R. Sickles (1992), "Finite Sample Evidence on the Performance of Stochastic
Frontiers and Data Envelopment Analysis using Panel Data", Journal of Econometrics 51: 259-
84.

Lewin Arie Y., Morey, Richard C., Cook T. J. (1982), "Evaluating the Administrative



15
Efficiency of Courts", Omega: 401-411.
Lloyd's Ports of the World (1993), Lloyd's of London Press.

Oum, T. and C. Yu, "Economic Efficiency of Railways and Implications for Public Policy",
Journal of Transportation Economics and Policy (May): 121-38.

Port of Melbourne Authority (1992), Comparative Port Study, (monograph).

Ramani, K. (1996), " An Interactive Simulation Model for the Logistics Planning of Container
Operations in Seaports", Simulation (May): 291-300.

Slack B. (1985), "Containerisation, Inter-Port Competition and Port Selection", Maritime
Policy and Management, 12 (4).

Tongzon, J. (1989), "The Impact of Wharfage Costs on Victoria' s Export-Oriented Industries",
Economic Papers 8: 58-64.

Tongzon, J. (1995), "The Determinants of Port Performance and Efficiency", Transportation
Research 29: 245-52.

United Nations Conference on Trade and Development (1987), Measuring and Evaluating Port
Performance and Productivity, UNCTAD Monographs on Port Management, 6, New York:
United Nations.




Table Al.

Name of Port

Country

TEU/Berth Hr.

Appendix
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List of Sampled Ports and Selected Information*
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Melbourne
Sydney
Brisbane
Fremantle
Adelaide
Rotterdam
Tacoma
Zeebrugge
Wellington
Montreal
Baltimore
Auckland
Le Havre
HongKong
Kaohsiung
Bombay
Felixstowe

Jakarta
Manila
Klang
Singapore
Bangkok

Puerto Rico

Australia
Australia
Australia
Australia
Australia
Netherlands
USA

Belgium

New Zealand
Canada

USA

New Zealand
France

Hong Kong
Taiwan
India

United Kingdom 38.
15.
14.

USA
Indonesia
Philippines
Malaysia
Singapore
Thailand

Data is for 1991.
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667475
477395
173800
123500
43450
3766000
1020708
363787
69760
575554
465491
229200
920000
6161912
3913107
279556
1433859
1584038
736437
168437
607626
6350000
1170697

2489
2541
1607
1495
786
33377
1530
1348
2842
2247
2293
1553
7900
129303
11465
560
5291
5727
12106
1658
5910
9784
2422
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Table A.2. Descriptive Statistics

(Based on the 23 sampled ports)

Variable Maximum Minimum Mean Standard Coeff. of
Deviation variation

TEUs per 50.0 2.0 14.4 13.6 0.95
berth hour
CONMIX 67.0 4.0 28.0 17.7 0.63
(%)
BRLWT 31.0 0.8 5.0 6.5 1.29
(hours)
TEUCH 44.0 13.1 24.8 8.6 0.35
(TEUs per
Crane hour)
FS (number 129303 560 10706 26783 2.50
of ship calls)
CH (A9) 151.1 30.68 90.40 33.25 0.37
TH (number 6350000 43450 1360947 1852359 1.36
of TEUs)
CE (average | 667 25 232 186 0.80
# of TEUs
per ship call)

17
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NOTES

1. There are two types of cranes, quay cranes and gantry cranes. Quay cranes are located
at either a fixed berthing point or are moveable. These cranes are used exclusively for the
loading and unloading of containers. Gantry cranes have a light, bridge-like overhead
framework supporting a moveable crane. Gantry cranes have a number of uses. Some
gantry cranes are used exclusively for on-line operations, loading and unloading containers
from prime movers which transport the containers to and from dockside. Some gantry
cranes are used for off-line operations, e.g., handling of containers prior to ship loading,
which involves stacking the containers (Ramani 1996). Gantry cranes are particularly
important in the handling of 40 containers. In this study, only gantry cranes are counted as
quay crane performance is captured in the number of TEUs per quay crane hour measure.

2. Two of the many studies comparing DEA with the traditional production function
approach to measuring efficiency are Gong and Sickles (1992) and Bowlin et al. (1985).

3. A variation on the Additive model, referred to as the multiplicative model, yields a
piece-wise Cobb-Douglas (variable returns to scale) or a piece-wise log-linear (constant
returns to scale) envelopment surface which results from the application of Additive model
to the logarithms of the data, with (for variable returns to scale) or without (for constant
returns to scale) the unconstrained variable vy,

4. There are four general categories of cargoes that are handled in ports: dry bulk, liquid
bulk, containerised cargo and noncontainerised nonbulk cargo. Each of these types require
certain type of ships and specialized cargo handling equipment.



