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ABSTRACT

What role have theoretical methods initially developed in physics played in the progress of financial
economics? What is the relationship between financial economics and econophysics? What is the
relevance of the ‘ergodicity hypothesis’ to financial economics? This paper addresses these questions
by reviewing the etymology and history of the ergodicity hypothesis from the introduction of the
concept in 19th century statistical mechanics until the emergence of econophysics during the 1990's.
An explanation of ergodicity is provided that establishes a connection to the fundamental problem of
using non-experimental data to verify theoretical propositions in financial economics. The historical
evolution of the ergodicity assumption in the ex post / ex ante quandary confronting important
theories in financial economics is also examined.
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Ergodicity, Econophysics and
Financial Economics

1. Introduction

At least since Markowitz (1952) initiated modern portfolio theory (MPT), it has often been
maintained that the tradeoff between systematic risk and expected return is the most important
theoretical element of financial economics, e.g., Campbell (1996). Following Mirowski (1984), the
static equilibrium methods used to develop MPT results such as the capital asset pricing model can
be traced to mathematical concepts developed from the deterministic ‘rational mechanics’ approach
to 19" century physics. In the years since Markowitz (1952), financial economics has featured
further contributions that employ alternative methods adapted from more recent contributions to
physics, including the diffusion processes employed by Black and Scholes (1973) to determine option
prices and the stable Paretian models of Fama and Mandelbrot to estimate the distribution of stock
prices. The emergence of econophysics during the last decade of the twentieth century, e.g.,
Roehner (2002), has also provided a variety of theoretical and empirical methods adapted from
physics — ranging from statistical mechanics to chaos theory — to analyze financial phenomena. Yet,
despite considerable overlap in method, contributions to econophysics have gained limited attention
in financial economics. Similarly, econophysicists generally consider financial economics to be
primarily concerned with a core theory that is inconsistent with the empirical orientation of physical
theory.

Physical theory has evolved considerably from the constrained optimization, static equilibrium
approach which underpins MPT. In detailing historical developments in physics since the 19"
century, it is conventional to jump from the determinism of rational mechanics to quantum mechanics

to recent developments in chaos theory, overlooking the relevance of the initial steps toward
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modeling the stochastic behavior of physical phenomena by Ludwig Boltzmann (1844-1906), James
Maxwell (1831-1879) and Josiah Gibbs (1839-1903). As such, there is a point of demarcation
between the intellectual histories of financial economics and econophysics that can, arguably, be
traced to the debate over energistics around the end of the 19" century. While the evolution of
physics after energistics involved the introduction and subsequent development of stochastic
concepts, fueled by the emergence of MPT following Markowitz, financial economics incorporated
empirical methods aimed at generalizing and testing the capital asset pricing model and other elements
of MPT.! Significantly, stochastic generalization of the static equilibrium approach required the
adoption of ‘time reversible’ probabilistic models, especially the likelihood functions associated with
stationary distributions.

In contrast, from the early ergodic models of Boltzmann to the fractals and chaos theory of
Mandlebrot, physics has employed a wider variety of stochastic models aimed at capturing key
empirical characteristics of various physical problems at hand. These models typically have a
mathematical structure that varies substantively from the constrained optimization techniques of
MPT, restricting the straightforward application of many physical models to this component of
financial economics. Yet, the demarcation between physics and financial economics was blurred
substantively by the introduction of diffusion model techniques to solve contingent claims valuation
problems important in ‘financial engineering’. Following contributions by Sprenkle (1962) and
Samuelson (1965), Black and Scholes (1973) and Merton (1973) provided an empirically viable
method of using diffusion methods to determine a partial differential equation that can be solved for
an option price. Use of Ito’s lemma to solve stochastic optimization problems is now commonplace

in financial economics, e.g., Brennan and Schwartz (1979). In spite of the considerable progression
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of techniques employed in physics into financial economics, overcoming the difficulties of applying
models developed for physical situations to fit the empirical properties of economic phenomena s still
the central problem confronting econophysics.

Schinckus (2010, p.3816) accurately recognizes that the positivist philosophical foundation of
econophysics depends fundamentally on empirical observation: “The empiricist dimension is probably
the first positivist feature of econophysics”. Following McCauley (2004) and others, this concern
with empiricism often focuses on the identification of macro-level statistical regularities that are
characterized by the scaling laws identified by Mandelbrot (1997) and Mandlebrot and Hudson (2004 )
for financial data. Unfortunately, this empirically driven ideal is often confounded by the ‘non-
repeatable’ experiment that characterizes most observed economic and financial data. There is
quandary posed by having only a single observed ex post time path to estimate the distributional
parameters for the ensemble of ex ante time paths needed to make decisions involving future values
of financial variables. In contrast to physical sciences, in the human sciences there is no assurance
that ex post statistical regularity translates into ex ante forecasting accuracy. Resolution of this
quandary highlights the usefulness of employing a ‘phenomenological’ approach to defining the
boundary between financial economics and econophysics.

To this end, this paper provides an etymology and history of the ‘ergodicity hypothesis’ in 19"
century statistical mechanics. Subsequent use of ergodicity in financial economics is also examined.
A classical interpretation of ergodicity is provided that uses Sturm-Liouville theory, a mathematical
method central to classical statistical mechanics pioneered by Boltzmann (Nolte 2010), to decompose
the transition probability density of a one-dimensional diffusion process subject to regular upper and

lower reflecting barriers. The decomposition divides the transition density of an ergodic process into
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a limiting stationary density which is independent of time and initial condition, and a power series of
time and boundary dependent transient terms. In contrast, empirical theory aimed at estimating
relationships from financial economics typically ignores the implications of the initial and boundary
conditions that generate transient terms and focuses on properties of limiting stationary densities with
finite parameters. To illustrate the implications of the expanded class of ergodic processes available
to econophysics, properties of the quartic exponential stationary density are considered and used to
assess the role of the ergodicity hypothesis in the ex post / ex ante quandary confronting important
theories in financial economics.

2. A Brief History of Ergodic Theory

The Encyclopedia of Mathematics (2002) defines ergodic theory as the “metric theory of dynamical

systems. The branch of the theory of dynamical systems that studies systems with an invariant
measure and related problems.” This modern definition implicitly identifies the birth of ergodic theory
with proofs of the mean ergodic theorem by von Neumann (1932) and the pointwise ergodic theorem
by Birkhoff (1931). These early proofs have had significant impact in a wide range of modern
subjects. For example, the notions of invariant measure and metric transitivity used in the proofs are
fundamental to the measure theoretic foundation of modern probability theory (Doob 1953; Mackey
1974). Building on a seminal contribution to probability theory, Kolmogorov (1933), in the years
immediately following it was recognized that the ergodic theorems generalize the strong law of large
numbers. Similarly, the equality of ensemble and time averages — the essence of the mean ergodic
theorem — is necessary to the concept of a strictly stationary stochastic process. Ergodic theory is
the basis for the modern study of random dynamical systems, e.g., Arnold (1988). In mathematics,

ergodic theory connects measure theory with the theory of transformation groups. This connection
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is important in motivating the generalization of harmonic analysis from the real line to locally compact
groups.

From the perspective of modern mathematics, statistical physics or systems theory, Birkhoff (1931)
and von Neumann (1932) are excellent starting points for a history of ergodic theory. Building on
the ergodic theorems, subsequent developments in these and related fields have been dramatic. These
contributions mark the solution to a problem in statistical mechanics and thermodynamics that was
recognized sixty years earlier when Ludwig Boltzmann introduced the ergodic hypothesis to permit
the theoretical phase space average to be interchanged with the measurable time average. From the
perspective of both econophysics and financial economics, the selection of the less formally correct
and rigorous contributions of Boltzmann are a more auspicious beginning for a history of the ergodic
hypothesis. Problems of interest in mathematics are generated by arange of subjects, such as physics,
chemistry, engineering and biology. The formulation and solution of physical problems in, say,
statistical mechanics or particle physics will have mathematical features which are inapplicable or
unnecessary in financial economics. For example, in statistical mechanics, points in the phase space
are often multi-dimensional functions representing the mechanical state of the system, hence the
desirability of a group-theoretic interpretation of the ergodic hypothesis. From the perspective of
financial economics, such complications are largely irrelevant and an alternative history of ergodic
theory that captures the etymology and basic physical interpretation is more revealing than a history
that focuses on the relevance for mathematics. This arguably more revealing history begins with the
formulation of theoretical problems that von Neumann and Birkhoff were able to solve.

Mirowski (1984; 1989a, esp. ch.5) establishes the importance of 19™ century physics in the

development of the neoclassical economic system advanced by W. Stanley Jevons (1835-1882) and
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Leon Walras (1834-1910) during the marginalist revolution of the 1870's. As such, neoclassical
economic theory inherited essential features of mid-19th century physics: deterministic rational
mechanics; conservation of energy; and the non-atomistic continuum view of matter that inspired the
energetics movement later in the 19" century.” From neoclassical economics, MPT inherited a variety
of static equilibrium techniques and tools such as mean-variance utility functions and constrained
optimization. Important neoclassical economists such as Samuelson and Hicks made early
contributions to financial economics. As such, failings of neoclassical economics identified by
econophysicists also apply to central propositions of modern portfolio theory. Included in the failings
is an over-emphasis on theoretical results at the expense of identifying models that have greater
empirical validity, e.g., Roehner (2002). It was during the transition from rational to statistical
mechanics during the last third of the century that Boltzmann made the contributions that led to the
transformation of theoretical physics from the microscopic mechanistic models of Rudolf Clausius
(1835-1882) and James Maxwell to the macroscopic probabilistic theories of Josiah Gibbs and Albert
Einstein (1879-1955).” Coming largely after the start of the marginalist revolution in economics, this
fundamental transformation in theoretical physics had little impact on the progression of financial
economics until the appearance of contributions on continuous time finance that started in the 1960's
and culminated in Black and Scholes (1973). The deterministic mechanics of the energistic approach
was well suited to the axiomatic formalization of neoclassical economic theory which culminated in
the von Neumann and Morgenstern expected utility approach to modeling uncertainty and the
Bourbaki inspired Arrow-Debreu general equilibrium theory, e.g., Weintraub (2002).

Having descended from the deterministic rational mechanics of mid-19" century physics, defining

works of neoclassical economics, such as Hicks (1939) and Samuelson (1947), do not capture the
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probabilistic approach to modeling systems initially introduced by Boltzmann and further clarified by
Gibbs.* Mathematical problems raised by Boltzmann were subsequently solved using tools introduced
in a string of later contributions by the likes of the Ehrenfests and Cantor in set theory, Gibbs and
Einstein in physics, Lebesque in measure theory, Kolmogorov in probability theory, Weiner and Levy
in stochastic processes. Boltzmann was primarily concerned with problems in the kinetic theory of
gases, formulating dynamic properties of the stationary Maxwell distribution — the velocity
distribution of gas molecules in thermal equilibrium. Starting in 1871, Boltzmann took this analysis
one step further to determine the evolution equation for the distribution function. The mathematical
implications of this analysis still resonate in many subjects of the modern era. The etymology for
“ergodic” begins with an 1884 paper by Boltzmann, though the initial insight to use probabilities to
describe a gas system can be found as early as 1857 in a paper by Clausius and in the famous 1860
and 1867 papers by Maxwell.’

The Maxwell distribution is defined over the velocity of gas molecules and provides the probability
for the relative number of molecules with velocities in a certain range. Using a mechanical model that
involved molecular collision, Maxwell (1867) was able to demonstrate that, in thermal equilibrium,
this distribution of molecular velocities was a ‘stationary’ distribution that would not change shape
due to ongoing molecular collision. Boltzmann aimed to determine whether the Maxwell distribution
would emerge in the limit whatever the initial state of the gas. In order to study the dynamics of the
equilibrium distribution over time, Boltzmann introduced the probability distribution of the relative
time a gas molecule has a velocity in a certain range while still retaining the notion of probability for
velocities of arelative number of gas molecules. Under the ergodic hypothesis, the average behavior

of the macroscopic gas system, which can objectively be measured over time, can be interchanged
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with the average value calculated from the ensemble of unobservable and highly complex microscopic
molecular motions at a given point in time. In the words of Weiner (1939, p.1): “Both in the older
Maxwell theory and in the later theory of Gibbs, it is necessary to make some sort of logical transition
between the average behavior of all dynamical systems of a given family or ensemble, and the
historical average of a single system.”
3. Use of the Ergodic Hypothesis in Financial Economics

At least since Samuelson (1976), it has been recognized that empirical theory and estimation in
economics relies heavily on the use of specific stationary distributions associated with ergodic
processes. As reflected in the evolution of the concept in economics, the specification and
implications of ergodicity have only developed gradually. The early presentation of ergodicity by
Samuelson (1976) involves the addition of a discrete Markov error term into the deterministic
cobweb model to demonstrate that estimated forecasts of future values, such as prices, “should be
less variable than the actual data”. Considerable opaqueness about the definition of ergodicity is

133

reflected in the statement that a “‘stable’ stochastic process ... eventually forgets its past and therefore
in the far future can be expected to approach an ergodic probability distribution” (Samuelson 1976,
p-2). The connection between ergodic processes and non-linear dynamics that characterizes present
efforts in economics goes unrecognized, e.g., (Samuelson 1976, p.1, 5). While some applications
of ergodic processes to theoretical modeling in economics have emerged since Samuelson (1976),
e.g., Horst and Wenzelburger (1984); Bullard and Butler (1993); Dixit and Pindyck (1994),
econometrics has produced the bulk of the contributions.

Empirical estimation for the deterministic models of neoclassical economics initially proceeded with

the addition of a stationary, usually Gaussian, error term to produce a discrete time general linear
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model (GLM) leading to estimation using ordinary least squares or maximum likelihood techniques.
In financial economics, such early estimations were associated with tests of the capital asset pricing
model such as the “market model”, e.g., Elton and Gruber (1984). Iterations and extensions of the
GLM to deal with complications arising in empirical estimates dominated early work in econometrics,
e.g., Dhrymes (1974) and Theil (1971), leading to application of generalized least squares estimation
techniques that encompassed autocorrelated and heteroskedastic error terms. Employing L, vector
space methods with stationary Gaussian-based error term distributions ensured these early stochastic
models implicitly assumed ergodicity. The generalization of this discrete time estimation approach
to the class of ARCH and GARCH error term models by Engle and Granger was of such significance
that a Nobel prize in economics was awarded for this contribution, , e.g., Engle and Granger (1987).
By modeling the evolution of the volatility, this approach permitted a limited degree of non-linearity
to be modeled providing a substantively better fit to observed economic time seris. Financial
economics provides numerous empirical studies comparing the volatility forecasting ability of
GARCH, ‘implied volatility’ and historical volatility for financial variables.

The emergence of ARCH, GARCH and related models was part of a general trend toward the use
of inductive methods in economics, often employing discrete, linear time series methods to model
transformed economic variables, e.g., Hendry (1995). Atleast since Dickey and Fuller (1979), it has
been recognized that estimates of univariate time series models for many financial times series reveals
evidence of ‘non-stationarity’. A number of approaches have emerged to deal with this apparent
empirical quandary.® In particular, transformation techniques for time series models have received
considerable attention. Extension of the Box-Jenkins methodology led to the concept of economic

time series being I(0) — stationary in the level — and I(1) — non-stationary in the level but stationary
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after first differencing. Two I(1) economic variables could be cointegrated if differencing the two
series produced an 1(0) process, e.g., Hendry (1995). Extending early work on distributed lags, long
memory processes have also been employed where the time series is only subject to fractional
differencing. Significantly, recent contributions on Markov switching processes and exponential
smooth transition autoregressive processes have demonstrated the “possibility that nonlinear ergodic
processes can be misinterpreted as unit root nonstationary processes” (Kapetanios and Shin 2011,
p.620).

The conventional view of ergodicity in economics is reflected by Hendry (1995, p.100): “Whether
economic reality is an ergodic process after suitable transformation is a deep issue” which is difficult
to analyze rigorously. As a consequence, in the limited number of instances where ergodicity is
examined in economics a variety of different interpretations appear. In contrast, the ergodic
hypothesis in statistical mechanics is associated with the more physically transparent kinetic gas model
than the often technical and targeted concepts of ergodicity encountered in modern economics. For
Boltzmann, the ergodic hypothesis permitted the unobserved complex microscopic interactions of
individual gas molecules to obey the second law of thermodynamics, a concept that has limited
application in economics.” Despite differences in physical interpretation, the problem of modeling
‘macroscopic’ financial variables, such as stock prices, exchange rates or interest rates, when it is not
possible to derive a theory for describing and predicting empirical observations from known first
principles about the (microscopic) rational behavior of individuals and firms. By construction, this
involves a phenomenological approach to modeling.®

Even though the formal solutions proposed were inadequate by standards of modern mathematics,

the thermodynamic model introduced by Boltzmann to explain the dynamic properties of the Maxwell
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distribution is a pedagogically useful starting point to develop the implications of ergodicity in
financial economics. To be sure, von Neumann (1932) and Birkhoff (1931) correctly specify
ergodicity using Lebesque integration — an essential analytical tool unavailable to Boltzmann — but
the analysis is too complex to be of much value to all but the most mathematically specialized
economists. The physical intuition of the kinetic gas model is lost in the generality of the results.
Using Boltzmann as a starting point, the large number of mechanical and complex molecular collisions
could correspond to the large number of microscopic, atomistic liquidity providers and traders
interacting to determine the macroscopic financial market price.’ In this context, itis variables such
as the asset price or the interest rate or the exchange rate, or some combination, that is being
measured over time and ergodicity would be associated with the properties of the transition density
generating the macroscopic variables. Ergodicity can fail for a number of reasons and there is value
in determining the source of the failure. In this vein, there are two fundamental difficulties associated
with the ergodic hypothesis in Boltzmann’s statistical mechanics — reversibility and recurrence — that
have a rough similarity to notions available in econophysics but largely unrecognized in mainstream
economics. '’

Halmos (1949, p.1017) is a helpful starting point to sort out the differing notions of ergodicity that
arise in range of subjects: “The ergodic theorem is a statement about a space, a function and a
transformation”. In mathematical terms, ergodicity or ‘metric transitivity’ is a property of
‘indecomposable’, measure preserving transformations. Because the transformation acts on points
in the space, there is a fundamental connection to the method of measuring relationships such as
distance or volume in the space. In von Neumann (1932) and Birkhoff (1931), this is accomplished

using the notion of Lebesque measure: the admissible functions are either integrable (Birkhoff) or
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square integrable (von Neumann). In contrast to, say, statistical mechanics where spaces and
functions account for the complex physical interaction of large numbers of particles, economic theory
can usually specify the space in a mathematically convenient fashion. For example, in the case where
there is a single random variable, then the space is “superfluous” (Mackey 1974, p.182) as the random
variable is completely described by the distribution. Multiple random variables can be handled by
assuming the random variables are discrete with finite state spaces. In effect, conditions for an
‘invariant measure’ can often be assumed in financial economics in order to focus attention on
“finding and studying the invariant measures” (Arnold 1998, p.22) where, in the terminology of
econometrics, the invariant measure usually corresponds to the stationary distribution or likelihood
function.

The mean ergodic theorem of von Neumann (1932) provides an essential connection to the
ergodicity hypothesis in financial econometrics. It is well known that, in the Hilbert and Banach
spaces common to econometric work, the mean ergodic theorem corresponds to the strong law of
large numbers. In statistical applications where strictly stationary distributions are assumed, the
relevant ergodic transformation, L*, is the unit shift operator: L* W[x(#)] = W[L* x(r)] = Y[x(t+1)];
[(L¥*] P[x()] = P[x(t+k)]; and {(L*) ™} P[x(f)] = ¥[x(t-k)] with k being an integer and ¥[x] the
strictly stationary distribution for x that in the strictly stationary case is replicated at each ."
Significantly, this reversible transformation is independent of initial time and state. Because this
transformation can be achieved by imposing strict stationarity on W[x], L* will only work for certain
ergodic processes. In effect, the ergodic requirement that the transformation be measure preserving
is weaker than the strict stationarity of the stochastic process sufficient to achieve L*. The

implications of the reversible ergodic transformation L* for heterodox economics are described by
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Davidson (1991, p.331): “In an economic world governed entirely by ergodic processes ... economic
relationships among variables are timeless, or ahistoric in the sense that the future is merely a
statistical reflection of the past”."

Employing conventional econometrics in empirical studies, financial economics also requires that
the real world distribution for x(¢) be sufficiently similar to those for both x(¢+k) or x(¢-k), i.e., the
ergodic transformation L* is reversible. The reversibility assumption is systemic in financial
economics appearing in the use of long estimation periods to determine important variables such as
the “equity risk premium”. There is a persistent belief that increasing the length or sampling
frequency of a financial time series will improve the precision of a statistical estimate, e.g., Dimson
etal. (2002). Similarly, focus on the tradeoff between ‘risk and return’ requires the use of unimodal
stationary densities for transformed financial variables such as the rate of return. The impact of initial
and boundary conditions on financial decision making is generally ignored. The inconsistency of
reversible processes with key empirical facts, such as the asymmetric tendency for downdrafts in
prices to be more severe than upswings, is ignored in favor of adhering to theoretical models that can
be derived with constrained optimization techniques, e.g., Constantides (2002).

4. A Phenomenological Interpretation of Ergodicity

In physics, phenomenology lies at the intersection of theory and experiment. Theoretical
relationships between empirical observations are modeled without deriving the theory directly from
first principles, e.g., Newton’s laws of motion. Predictions based on these theoretical relationships
are obtained and compared to further experimental data designed to test the predictions. In this

fashion, new theories that can be derived from first principles are motivated. Confronted with non-

experimental data for important financial variables, such as stock prices, interest rates and the like,
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financial economics similarly develops theoretical models that aim to fit the ‘stylized facts’ of those
variables but are not initially derived directly from ‘first principles’, such as the maximizing behavior
of individuals and firms. This approach is inherently phenomenological. The inductive approach in
econometrics is an obvious example of phenomenological theorizing in economics, e.g., Hendry
(1995). Given the difficulties in economics of testing model predictions with ‘new’ experimental data,
econophysics provides a rich variety of mathematical techniques that can be adapted to determining
mathematical relationships among economic variables that explain the ‘stylized facts’."

The evolution of economic theory from the deterministic models of neoclassical economics to more
modern stochastic models has been incremental and disjointed. The preference for linear models of
static equilibrium relationships has restricted the application of frameworks from econophysics that
capture more complex non-linear dynamics, e.g., chaos theory; truncated Levy processes. Yet,
important variables in economics have relatively innocuous sample paths compared to some types of
variables encountered in physics. There is an impressive range of mathematical and statistical models
that, seemingly, could be applied to almost any physical or economic situation. If the process can be
verbalized, then a model can be specified. This begs the question: are there transformations —ergodic
or otherwise — that capture the basic ‘stylized facts’ of observed financial data? Significantly, the
random instability in the observed sample paths identified in financial time series is consistent with
the ex ante stochastic bifurcation of an ergodic process, e.g., Chiarella et al. [31]. In this case, the
associated ex ante stationary densities are multimodal and irreversible, a situation where the mean
calculated from past values of a single, non-experimental ex post realization of the process is not
necessarily informative about the mean for future values.

Boltzmann was concerned with demonstrating that the Maxwell distribution emerged in the limit
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as t = « for systems with large numbers of particles. The limiting process for 7 requires that the
system run long enough that the initial conditions do not impact the stationary distribution. At the
time, two fundamental criticisms were aimed at this general approach: reversibility and recurrence.
In the context of economic time series, reversibility relates to the use of past values of the process
to forecast future values." Recurrence relates to the properties of the long run average which
involves the ability and length of time for an ergodic process to return to its stationary state. For
Boltzmann, both these criticisms have roots in the difficulty of reconciling the second law of
thermodynamics with the ergodicity hypothesis. Using a Sturm-Liouville methods, it can be shown
that ergodicity requires the transition density of the process to be decomposable into the sum of a
stationary density and a mean zero transient term that captures the impact of the initial condition of
the system on the individual sample paths; irreversibility relates to properties of the stationary density
and non-recurrence to the behavior of the transient term.

Because the particle movements in a kinetic gas model are contained within an enclosed system,
e.g., a vertical glass tube, classical Sturm-Liouville (S-L) methods can be applied to obtain solutions
for the transition densities. These results for the distributional implications of imposing regular
reflecting boundaries on diffusion processes are representative of the phenomenonological approach
to random systems theory which: “studies qualitative changes of the densites of invariant measures
of the Markov semigroup generated by random dynamical systems induced by stochastic differential
equations” (Crauel et al.[32, p.27])."” Because the initial condition of the system is explicitly
recognized, ergodicity in these models takes a different form than that associated with the unit shift
transformation applied to unimodal stationary densities typically adopted in financial economics. The

ergodic transition densities can be derived as solutions to the forward differential equation associated
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with one-dimensional diffusions.'® The transition densities contain a transient term that is dependent
on the initial condition of the system and boundaries imposed on the state space. Irreversibility can
be introduced by employing multi-modal stationary densities.

The distributional implications of boundary restrictions, derived by modeling the random variable
as a diffusion process subject to reflecting barriers, have been studied for many years, e.g., Feller
(1954). The diffusion process framework is useful because it imposes a functional structure that is
sufficient for known partial differential equation (PDE) solution procedures to be used to derive the
relevant transition probability densities. Wong (1964) demonstrated that with appropriate
specification of parameters in the PDE, the transition densities for popular stationary distributions
such as the exponential, uniform, and normal distributions can be derived using S-L methods. This
paper proposes that the S-L framework provides sufficient generality to resolve certain empirical
difficulties arising from key stylized facts in non-experimental economic time series. In turn, the
framework suggests a method of generalizing economic theory to encompass the nonlinear dynamics
of diffusion processes. In other words, within the more formal mathematical framework of classical
statistical mechanics, it is possible to reformulate the ergodicity assumption to permit a useful
stochastic generalization of mainstream financial economics.

The use of the diffusion model to represent the nonlinear dynamics of stochastic processes is found
in a wide range of subjects. Physical restrictions such as the rate of observed genetic mutation in
biology or character of heat diffusion in engineering or physics often determine the specific
formalization of the diffusion model. Because physical interactions can be complex, mathematical
results for diffusion models are pitched at a level of generality sufficient to cover such cases.'” Such

generality is usually not required in financial economics. In this vein, it is possible to exploit
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mathematical properties of bounded state spaces and one dimensional diffusions to overcome certain
analytical problems that can confront continuous time Markov solutions. The key construct in the
S-L method is the ergodic transition probability density function U which is associated with the
random (economic) variable x at time 7 ( U = Ulx, ¢ | x,]) that follows a regular, time homogeneous
diffusion process. While itis possible to allow the state space to be an infinite open interval I, = (a,b:
0 <a< b <), afinite closed interval I.=[ a,b: -» < a < b < +] or the specific interval /= [0 =

a < b < «) are applicable to economic variables."®

Assuming that U is twice continuously
differentiable in x and once in ¢ and vanishes outside the relevant interval, then U obeys the forward

equation (e.g., Gihhman and Skorohod 1979, p.102-4):

where: B[x] (=2 ¢°[x] > 0) is the one half the infinitesimal variance and A[x] the infinitesimal drift
of the process. B[x] is assumed to be twice and A[x] once continuously differentiable in x. Being
time homogeneous, this formulation permits state, but not time, variation in the drift and variance
parameters.

If the diffusion process is subject to upper and lower reflecting boundaries that are regular and fixed
(-° < a < b < =), the “Sturm-Liouville problem” involves solving (1) subject to the separated

boundary conditions:"’

— { B[x] U [x,t] H\w - A[b] UIlb,t] = 0 (4)
dx

And the initial condition:
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Ulx,0] = flx | where : j flx 1 =1 (5)
and f[x,] is the continuous density function associatedﬂ with x, where a < x, <b. When the initial
starting value, x,, is known with certainty, the initial condition becomes the Dirac delta function,
Ulx,0] =3[ x - x, ], and the resulting solution for U is referred to as the ‘principal solution’. Within
the framework of the S-L. method, a stochastic process has the ergodic property when the transition

density satisfies:*

Important special cases occur for the principal solution (f[x,] = J[ x - x,, ]) and when f[x,] is from a
specific class such as the Pearson distributions. To be ergodic, the time invariant stationary density
Y[x] is not permitted to ‘decompose’ the sample space with a finite number of not decomposable sub-
densities, each of which is time invariant. Such irreversible processes are not ergodic, even though
each of the sub-densities could be restricted to obey the ergodic theorem. To achieve ergodicity, a
multi-modal stationary density can be used instead of decomposing the sample space using sub-
densities with different means. In turn, multi-modal irreversible ergodic processes have the property
that the mean calculated from past values of the process are not necessarily informative enough about
the modes of the ex ante densities to provide accurate predictions.

In order to more accurately capture the ex ante properties of financial time series, there are some
potentially restrictive features in the S-L framework that can be identified. For example, time
homogeneity of the process eliminates the need to explicitly consider the location of #,>' Time
homogeneity is a property that is consistent with ‘ahistorical’ mainstream economic theorizing. In

the case of U that are consistent with L* (U* hereafter), a time homogeneous and reversible
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stationary distribution governs the dynamics of x(¢). Significantly, while U is time homogeneous,
there are some U consistent with irreversible processes. A relevant issue for econophysics is to
determine the extent to which concepts — time homogeneity or reversibility — are inconsistent with
economic processes that capture: liquidity traps in money markets; structural shifts; and, collapsing
conventions in stock markets. In the S-L framework, the initial state of the system (x,) is known and
the ergodic transition density provides information about how a given point x, shifts 7 units along a
trajectory.” For econometric applications employing a strictly stationary U*, the location of x, is
irrelevant while U incorporates x, as an initial condition associated with the solution of a partial
differential equation.
5. Density Decomposition Results™

In general, solving the forward equation (1) for U subject to (3), (4) and some admissible form of
(5) is difficult, e.g., Feller (1954), Risken (1989). In such circumstances, it is expedient to restrict
the problem specification to permit closed form solutions for the transition density to be obtained.
Wong (1964) provides an illustration of this approach. The PDE (1) is reduced to an ODE by only
considering the strictly stationary distributions arising from the Pearson system. Restrictions on the
associated W[x] are constructed by imposing the fundamental ODE condition for the unimodal

Pearson system of distributions:

The transition probability density U for the ergodic process can then be reconstructed by working
back from a specific closed form for the stationary distribution using known results for the solution

of specific forms of the forward equation. In this procedure, the d,, d;, d,, ¢, and e, in the Pearson
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ODE are used to specify the relevant parameters in (1). The U for important stationary distributions
that fall within the Pearson system, such as the normal, beta, central ¢, and exponential, can be derived
by this method.

The solution procedure employed by Wong (1964) depends crucially on restricting the PDE
problem sufficiently to apply classical S-L techniques. Using S-L methods, various studies have
generalized the set of solutions for U to cases where the stationary distribution is not a member of
the Pearson system or U is otherwise unknown, e.g., Linetsky (2005). In order to employ the
separation of variables technique used in solving S-L problems,(1) has to be transformed into the
canonical form of the forward equation. To do this, the following function associated with the

invariant measure is introduced:

where : plx]l = BIlx] rlx] qglx] =

Equation (6) is the canonical form of equation (1). The S-L problem now involves solving (6) subject
to appropriate initial and boundary conditions.

Because the methods for solving the S-L problem are ODE-based, some method of eliminating
the time derivative in (1) is required. Exploiting the assumption of time homogeneity, the

eigenfunction expansion approach applies separation of variables, permitting (6) to be specified as:
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Ulx.tl = ¢ ' g ix] (7)

Where @[x] is only required to satisfy the easier-to-solve ODE:

(Bix] olx] )} - Albl (bl - 0 (4
dx

Significant analytical advantages are obtained by making the S-L problem ‘regular’ which involves
assuming that [a,b] is a closed interval with r[x], p[x] and g[x] being real valued and p[x] having a
continuous derivative on [a,b]; and, r[x] > 0, p[x] > 0 atevery pointin [a,b]. ‘Singular’ S-L problems
arise where these conditions are violated due to, say, an infinite state space or a vanishing coefficient
in the interval [a,b]. The separated boundary conditions (3) and (4) ensure the problem is self-adjoint
(Berg and McGregor 1966, p.91).

The S-L problem of solving (6) subject to the initial and boundary conditions admits a solution
only for certain critical values of A, the eigenvalues. Further, since equation (1) is linear in U, the
general solution for (7) is given by a linear combination of solutions in the form of eigenfunction
expansions. Details of these results can be found in Hille (1969, ch. 8), Birkhoff and Rota (1989,
ch. 10) and Karlin and Taylor (1981). When the S-L problem is self-adjoint and regular the solutions
for the transition probability density can be summarized in the following:

Proposition: Ergodic Transition Density Decomposition

The regular, self-adjoint Sturm-Liouville problem has an infinite sequence of real eigenvalues, 0 =,
<A <A <...owith:
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To each eigenvalue there corresponds a unique eigenfunction ¢, = @,[x]. Normalization of the
eigenfunctions produces:

The y,[x] eigenfunctions form a complete orthonormal system in L,[a,b]. The unique solution in
L,[a,b] to (1), subject to the boundary conditions (3)-(4) and initial condition (5) is, in general form:

Ulx.tl = % c, w”[x] e " (8)

where : c = [. rix] f[xO] v [x] ax

Given this, the transition probability density function for x at time # can be reexpressed as the sum of
a stationary limiting equilibrium distribution associated with the A, = 0 eigenvalue, that is linearly
independent of the boundaries, and a power series of transient terms, associated with the remaining
eigenvalues, that are boundary and initial condition dependent:

where : ¥Yiix] = ———— (10 )

Tlet v 1 = Yy ¢ e 'y [x] - Y e v o Ixlw o dx] (1)

with : [. T [x,t \xO] dx = 0 and lim T [x,t \xO] = 0
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This Proposition provides the general solution to the regular, self-adjoint S-L problem of deriving U
when the process is subject to regular reflecting barriers. Taking the limitas ¢ — «in (9), it follows
from (10) and (11) that the transition density of the stochastic process satisfies the ergodic property.
Considerable effort has been given to determining the convergence behavior of different processes.
The distributional impact of the initial conditions and boundary restrictions enter through 7Tx,? |x,].
From the restrictions on 7x,z |x,] in (11), the total mass of the transient term is zero so the mean
ergodic theorem still applies. The transient only acts to redistribute the mass of the stationary
distribution, thereby causing a change in shape. The specific degree and type of alteration depends
on the relevant assumptions made about the parameters and initial functional forms. Significantly,
stochastic generalization of static and deterministic MPT almost always ignore the impact of
transients by only employing parameters of the limiting unimodal stationary distribution component.

The theoretical advantage obtained by imposing regular reflecting barriers on the diffusion state
space for the forward equation is that an ergodic decomposition of the transition density is assured.
The relevance of bounding the state space and imposing regular reflecting boundaries can be
illustrated by considering the well known solution (e.g., Cox and Miller 1965, p.209) for U involving
a constant coefficient standard normal variate Y(¢) = ({x - x, - ut }/ o) over the unbounded state space
I, = (o < x <. In this case the forward equation (1) reduces to: ¥2{0*U / JY *} = U / dt. By

evaluating these derivatives, it can be verified that the principal solution for U is:

1 (x - x - onn)’
0 2
G \/(27”) 20 1t

and ast »-oor t -~ + « then U -~ 0 and the stochastic process is nonergodic because it does not

possess anon-trivial stationary distribution. The mean ergodic theorem fails: if the process runs long
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enough, then U will evolve to where there is no discernible probability associated with starting from
x, and reaching the neighborhood of a given point x. In empirical terminology, such processes have
a unit root. Imposing regular reflecting boundaries is a certain method of obtaining a stationary
distribution and a discrete spectrum (Hansen and Schienkman 1998, p.13]). Alternative methods,
such as specifying the process to admit natural boundaries where the parameters of the diffusion are
zero within the state space, can give rise to continuous spectrum and raise significant analytical
complexities. Atleastsince Feller (1954), the search for useful solutions, including those for singular
diffusion problems, has produced a number of specific cases of interest. However, without the
analytical certainty of the S-L framework, analysis proceeds on a case by case basis.

One possible method of obtaining a stationary distribution without imposing both upper and lower
boundaries is to impose only a lower (upper) reflecting barrier and construct the stochastic process
such that positive (negative) infinity is non-attracting, e.g., Linetsky (2005); Ait-Sahalia (1999). In
financial economics, this is often achieved by using a mean-reverting drift term in the diffusion
equation, e.g., Schwartz (2000). In contrast, Cox and Miller [42, p.223-5] use the Brownian motion,
constant coefficient forward equation with x,> 0, A[x] = u < 0 and B[x] = Y267 subject to the lower
reflecting barrier at x = 0 given in (2) to solve for both the U and the stationary density. The principal

solution is solved using the ‘method of images’ to obtain:

Ux,t | xU] = exp - +exp
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where N[x] is again the cumulative standard normal distribution function. Observing that A[x] =p

> (0 again produces U ~ 0 as t ~ + «, the stationary density for A[x] = u < 0 has the Maxwell form:

Though x, does not enter the solution, combined with the location of the boundary at x = 0, it does
implicitly impose the restriction x > 0. From the Proposition, 71x,7 | x,] can be determined as U[x,?
I x,] - Y[x].

Following Linetsky (2005), Veerstraeten (2004) and others, the analytical procedure used to
determine U involves specifying the parameters of the forward equation and the boundary conditions
and then solving for W[x] and T[x,? Ix,]. Wong (1964) uses a different approach, initially selecting
a stationary distribution and then solving for U using the restrictions of the Pearson system to specify
the forward equation. In this approach, the functional form of the desired stationary distribution
determines the appropriate boundary conditions. While application of this approach has been limited
to the restricted class of distributions associated with the Pearson system, it is expedient when a
known stationary distribution, such as the standard normal distribution, is of interest. More precisely,

let:

1 x2
¥lxl = exp - B 1 = (- < x < )
1/ 2
2n

In this case, the boundaries of the state space are non-attracting and not regular. Solving the Pearson

equation gives: d¥[x]/dx = -x W[x] and a forward equation of the OU form:
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Following Wong [34, p.268] Mehler’s formula can be used to express the solution for U as:

-2
1 - (x - xo e )

2m(1 - e 7)
Given this, as t - -eothen U -~ 0 and as t -~ 4+ e then U achieves the stationary standard normal
distribution.
6. The Quartic Exponential Distribution
The roots of bifurcation theory can be found in the early solutions to certain deterministic ordinary
differential equations. Consider the deterministic dynamics described by the pitchfork bifurcation

ODE:

dx

dt

where p, and p, are the ‘normal’ and ‘splitting’ control variables, respectively (e.g., Cobb 1978,
1981). While p, has significant information in a stochastic context, this is not usually the case in the
deterministic problem so p,= 0 is assumed. Given this, for p, < 0, there is one real equilibrium ({dx
/dt} = 0) solution to this ODE at x = 0 where “all initial conditions converge to the same final point
exponentially fast with time” (Crauel and Flandoli 1998, p.260). For p, > 0, the solution bifurcates
into three equilibrium solutions x = { 0, + v p,}, one unstable and two stable. In this case, the state
space is split into two physically distinct regions (at x = 0) with the degree of splitting controlled by
the size of p,. Even forinitial conditions that are ‘close’, the equilibrium achieved will depend on the
sign of the initial condition. Stochastic bifurcation theory extends this model to incorporate
Markovian randomness. In this theory, “invariant measures are the random analogues of deterministic
fixed points” (Arnold 1998, p.469). Significantly, ergodicity now requires that the component

densities that bifurcate out of the stationary density at the bifurcation point be invariant measures,
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e.g., Crauel et al. (1999, sec.3). As such, the ergodic bifurcating process is irreversible in the sense
that past ex post sample paths (prior to the bifurcation) cannot reliably be used to generate statistics
for the future ex ante values of the variable (after the bifurcation).

It is well known that the introduction of randomness to the pitchfork ODE changes the properties
of the equilibrium solution, e.g., (Arnold (1998, sec.9.2]). It is no longer necessary that the state
space for the principal solution be determined by the location of the initial condition relative to the
bifurcation point. The possibility for randomness to cause some paths to cross over the bifurcation
point depends on the size of volatility of the process, 6, which measures the non-linear signal to white
noise ratio. Of the different approaches to introducing randomness (e.g., multiplicative noise), the
simplest approach to converting from a deterministic to a stochastic context is to add a Weiner
process (dW(t)) to the ODE. Augmenting the diffusion equation to allow for ¢ to control the relative
impact of non-linear drift versus random noise produces the “pitchfork bifurcation with additive
noise” (Arnold [9, p.475]) which in symmetric form is:

& () = (p X () - X()) d + o dw (1)

In economic applications, e.g., Ait-Sahlia [32], this diffusion process is referred to as the double well
process. While consistent with the common use of diffusion equations in financial economics, the
dynamics of the pitchfork process captured by T[x,¢ Ixo] have been “forgotten” (Arnold [9, p.473]).

Together with other areas of economics, financial economics is married to the transition probability
densities associated with unimodal stationary distributions. Yet, itis well know that more flexibility
in the shape of the stationary distribution can be achieved using a higher order exponential density,
e.g., Fisher [37], Cobb et al. [38], Caudel and Flandoli [36]. Increasing the degree of the polynomial

in the exponential comes at the expense of introducing additional parameters resulting in a substantial
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increase in the analytical complexity, typically defying a closed form solution for the transition
densities. However, at least since Elliott [39], it has been recognized that the solution of the
associated regular S-L problem will still have a discrete spectrum, even if the specific form of the
eigenfunctions and eigenvalues in T[x,? |lx,] are not precisely determined (Horsthemke and Lefever
[40, sec. 6.7]) . Inferences about transient stochastic behavior can often be obtained by examining
the solution of the deterministic non-linear dynamics. In this process, attention initially focuses on
the properties of the higher order exponential distributions.

To this end, assume that the stationary distribution is a fourth degree or “general quartic”

exponential:

Yixl - K ep (-0 [x1] = K ew [-(Bp, x + B_x o+ B_x o+ B x)l
where: K is a constant determined such that the density integrates to one; and, B, > 0.** Following
Fisher [37], the class of distributions associated with the general quartic exponential admits both
unimodal and bimodal densities and nests the standard normal as a limiting case where B, = 3; =B,
=0and B, =¥ with K= 1/(¥ 2). The stationary distribution of the bifurcating double well process
is a special case of the symmetric quartic exponential distribution:

iyl = K exp [-{B (x - p) =+ B (x - w) }] where p, = 0
where p is the population mean and the symmetry restriction requires B, = f; =0. Such multi-modal
stationary densities have received scant attention in mainstream economics. To see why the
condition on B, is needed, consider change of origin X =Y - {,/4 B,} to remove the cubic term from
the general quartic exponential (Matz [41, p.480]):

Wiyl = K ep [-(x (y - p ) v ow (y - @) vy (v - w0 )] where y o> 0

[

The substitution of y for x indicates the change of origin which produces the following relations
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between coefficients for the general and specific cases:

$Bp B, - 4B BB, B $pB, - 3B

$p 85,
The symmetry restriction k = 0 can only be satisfied if both B; and B, = 0. Given the symmetry
restriction, the double well process further requires -a. =y =06 = 1. Solving for the modes of ‘P[y]
gives + v {lal / (2y)} which reduces to + 1 for the double well process, as in Ait-Sahlia [32, Figure
6B, p.1385].
INSERT FIGURE 1 HERE

As illustrated in Figure 1, the selection of g, in the stationary density ‘¥, [x] = K, exp{ -(.25 x'-.5
x* - a,x) } defines a family of general quartic exponential densities, where a, is the selected value of
« for that specific density.” The coefficient restrictions on the parameters o and y dictate that these
values cannot be determined arbitrarily. For example, given that B, is set at .25, then for g; = 0, it
follows that o = B, = 0.5. ‘Slicing across’ the surface in Figure 1 at a;, = 0 reveals a stationary
distribution that is equal to the double well density. Continuing to slice across as g, increases in size,
the bimodal density becomes progressively more asymmetrically concentrated in positive x values.
Though the location of the modes does not change, the amount of density between the modes and
around the negative mode decreases. Similarly, as a; decreases in size the bimodal density becomes
more asymmetrically concentrated in positive x values. While the stationary density is bimodal over
a; € {-1,1}, for la| large enough the density becomes so asymmetric that only a unimodal density
appears. For the general quartic, asymmetry arises as the amount of the density surrounding each
mode (the sub-density) changes with a,. In this, the individual stationary sub-densities have a

symmetric shape. To introduce asymmetry in the sub-densities, the reflecting boundaries at a and b
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that bound the state space for the regular S-L problem can be used to introduce positive asymmetry
in the lower sub-density and negative asymmetry in the upper sub-density.

Following Chiarella et al. [19], the stochastic bifurcation process has a number of features which
are consistent with the ex ante behavior of a securities market driven by a combination of chartists
and fundamentalists. In particular, because the stationary distributions are multi-modal and depend
on forward parameters — such as k, a, y and g, in Figure 1 — that are not known on the decision date,
the rational expectations models employed in mainstream economics are uninformative. What use
is the forecast provided by E[x(7)] when it is known that there are other x(7) values that are more
likely to occur? A mean estimate that is close to the bifurcation point would even be unstable. In a
multi-modal world, complete fundamental uncertainty — where nothing is known about the evolution
of economic variables — is replaced by uncertainty over unknown parameter values that can change
due, say, to the collapse of a market convention. The associated difficulty of calculating a mean value
forecast or other econometric estimates from past data is compounded by the presence of transients
that originate from boundaries and initial conditions. For example, the presence of arecent structural
break can be accounted for by appropriate selection of x,. Of particular relevance to a comparison
of econophysics theories with theories arising in mainstream financial economics is the fundamental
dependence of investment decisions on x, which is not captured by the reversible ergodic processes
employed in MPT. The theoretical tools available in econophysics are able to demonstrate this
fundamental dependence by exploiting properties of ex ante bifurcating ergodic processes to generate
ex post sample paths that provide a better approximation to the sample paths of observed financial

data.
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7. Conclusion

The history of the ergodicity hypothesis provides a point of distinction between financial economics
and econophysics. Using results from classical statistical mechanics, this paper demonstrates that if
economic observations are generated by bifurcating ergodic processes, then the calculation of time
averages based on a sufficiently long enough set of past data can not be expected to provide a
statistically reliable estimate of any ex ante time or space averages that will be observed in a
sufficiently distant future calendar time. In other words, to deal with the problem of making statistical
inferences from ‘non-experimental’ data, economic theories typically employ stationary densities that
are: reversible; unimodal; and, where initial and boundary conditions have no short or long term
impact. The possibility of irreversible ergodic processes is not recognized or, it seems, intended.
Significantly, a type of fundamental uncertainty is inherent in bifurcating processes. as illustrated in
the need to select an g, in Figure 1 in order to determine the ex ante stationary density. A semantic
connection can be established between the subjective uncertainty about encountering a future
bifurcation point and, say, the possible collapse of an asset price bubble due to a change in Keynesian
convention about market valuations. Examining the quartic exponential stationary distribution
associated with a bifurcating ergodic process, it is apparent that this distribution nests the Gaussian
distribution as a special case. In this sense, results from classical statistical mechanics available in
econophysics represent a stochastic generalization of the processes employed in the conventional

economic theory.



32

Figure 1:* Family of Stationary Densities for ¥, [x] = K, exp{ -(25x* - .5x° - a, x) }

2

z

1 n.5
n

i 0.5

* Each of the continuous values for a signifies a different stationary density. For example, at a = 0 the density is the double well density
which symmetric about zero and with modes at +1.
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NOTES

1. Forexample, Black and Scholes (1973) discuss the consistency of the option pricing formula with
the capital asset pricing model. More generally, financial economics employs primarily Gaussian-
based finite parameter models that agree with the ‘tradeoff between risk and return’.

2. In rational mechanics, once the initial positions of the particles of interest, e.g., molecules, are
known, the mechanical model fully determines the future evolution of the system. This scientific and
philosophical approach is often referred to as Laplacian determinism.

3. Boltzmann and Max Planck were vociferous opponents of energetics. The debate over energetics
was part of a larger intellectual debate concerning determinism and reversibility. Jevons [54, p.738-9]
reflects the entrenched determinist position of the marginalists: “We may safely accept as a
satisfactory scientific hypothesis the doctrine so grandly put forth by Laplace, who asserted that a
perfect knowledge of the universe, as it existed at any given moment, would give a perfect knowledge
of what was to happen thenceforth and for ever after. Scientific inference is impossible, unless we
may regard the present as the outcome of what is past, and the cause of what is to come. To the view
of perfect intelligence nothing is uncertain.” What Boltzmann, Planck and others had observed in
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statistical physics was that, even though the behavior of one or two molecules can be completely
determined, it is not possible to generalize these mechanics to the describe the macroscopic motion
of molecules in large, complex systems, e.g., Brush [55, esp. ch.II].

4. As such, Boltzmann was part of the larger: “Second Scientific Revolution, associated with the
theories of Darwin, Maxwell, Planck, Einstein, Heisenberg and Schrédinger, (which) substituted a
world of process and chance whose ultimate philosophical meaning still remains obscure” (Brush [55,
p-79]). This revolution superceded the: “First Scientific Revolution, dominated by the physical
astronomy of Copernicus, Kepler, Galileo, and Newton, ... in which all changes are cyclic and all
motions are in principle determined by causal laws.” The irreversibility and indeterminism of the
Second Scientific Revolution replaces the reversibility and determinism of the First.

5. There are many interesting sources on these points which provide citations for the historical papers
that are being discussed. Cercignani [56, p.146-50] discusses the role of Maxwell and Boltzmann in
the development of the ergodic hypothesis. Maxwell [17] is identified as “perhaps the strongest
statement in favour of the ergodic hypothesis™. Brush [57] has a detailed account of the development
of the ergodic hypothesis. Gallavotti [58] traces the etymology of “ergodic” to the ‘ergode’ in an
1884 paper by Boltzmann. More precisely, an ergode is shorthand for ‘ergomonode’ which is a
‘monode with given energy’ where a ‘monode’ can be either a single stationary distribution taken as
an ensemble or a collection of such stationary distributions with some defined parameterization. The
specific use is clear from the context. Boltzmann proved that an ergode is an equilibrium ensemble
and, as such, provides a mechanical model consistent with the second law of thermodynamics. Itis
generally recognized that the modern usage of ‘the ergodic hypothesis’ originates with Ehrenfest [59].

6. Kapetanios and Shin [28, p.620] capture the essence of this quandary: “Interest in the interface
of nonstationarity and nonlinearity has been increasing in the econometric literature. The motivation
for this development may be traced to the perceived possibility that nonlinear ergodic processes can
be misinterpreted as unit root nonstationary processes. Furthermore, the inability of standard unit root
tests to reject the null hypothesis of unit root for a large number of macroeconomic variables, which
are supposed to be stationary according to economic theory, is another reason behind the increased
interest.”

7. The second law of thermodynamics is the universal law of increasing entropy — a measure of the
randomness of molecular motion and the loss of energy to do work. Firstrecognized in the early 19"
century, the second law maintains that the entropy of an isolated system, not in equilibrium, will
necessarily tend to increase over time. Entropy approaches a maximum value at thermal equilibrium.
A number of attempts have been made to apply the entropy of information to problems in economics,
with mixed success. In addition to the second law, physics now recognizes the zeroth law of
thermodynamics that “any system approaches an equilibrium state” (Reed and Simon [60, p.54]).
This implications of the second law for theories in economics was initially explored by
Georgescu-Roegen [61].

8. In this process, the ergodicity hypothesis is required to permit the one observed sample path to
be used to estimate the parameters for the ex ante distribution of the ensemble paths. In turn, these
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parameters are used to predict future values of the economic variable.

9. This interpretation of the microscopic collisions differs from Davidson [62, p.332]: “If there is
only one actual economy, and we do not possess, never have possessed and conceptually never will
possess an ensemble of economics worlds, then even a definition of probability distribution functions
is questionable.” In this context, points in the phase space at time ¢ represent individual realizations
of different macroscopic outcomes for the economic system at ¢. This interpretation of the ensembles
is closer to Gibbs than Maxwell. Precisely how to interpret the ensembles in an economic context
has not been closely examined. One exception is Nicola [63].

10. Heterodox critiques are associated with views considered to originate from within economics.
Such critiques are seen to be made by ‘economists’, e.g., Post Keynesian economists, institutional
economists, radical political economists and so on. Because such critiques take motivation from the
theories of mainstream economics, these critiques are distinct from econophysics. Following
Schinckus [1, p.3818]: “Econophysicists have then allies within economics with whom they should
become acquainted.”

11. Dhyrmes [64, p.1-29] discusses the algebra of the lag operator.

12. Critiques of mainstream economics that are rooted in the insights of The General Theory
recognize the distinction between fundamental uncertainty and objective probability. As a
consequence, the definition of ergodic theory in heterodox criticisms of mainstream economics lacks
formal precision, e.g., the short term dependence of ergodic processes on initial conditions is not
usually recognized. Ergodic theory is implicitly seen as another piece of the mathematical formalism
inspired by Hilbert and Bourbaki and captured in the Arrow-Debreu general equilibrium model of
mainstream economics.

13. In this context though not in all contexts, econophysics provides a ‘macroscopic’ approach. In
turn, ergodicity is an assumption that permits the time average from a single observed sample path
to (phenomenologically) model the ensemble of sample paths. Given this, econophysics does contain
a substantively richer toolkit that encompasses both ergodic and non-ergodic processes. Many works
in econophysics implicitly assume ergodicity and develop models based on that assumption.

14. The connection of the reversibility and recurrence concepts used in this paper with the actual
arguments made during the Boltzmann debates is somewhat tenuous. For example, the assumption
that the diffusion process is regular deals with the version of the recurrence problem that concerned
Boltzmann. The objective of introducing these concepts is pedagogy rather than historical accuracy.

15. The distinction between invariant and ergodic measures is fundamental. Recognizing a number
of distinct definitions of ergodicity are available, following Medio [65, p.70] the Birkhoff-Khinchin
ergodic (BK) theorem for invariant measures can be used to demonstrate that ergodic measures are
aclass of invariant measures. More precisely, the BK theorem permits the limit of the time average
to depend on initial conditions. In effect, the invariant measure is permitted to decompose into
invariant ‘sub-measures’. The physical interpretation of this restriction is that sample paths starting
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from a particular initial condition may only be able to access a part of the sample space, no matter
how long the process is allowed to run. For an ergodic process, sample paths starting from any
admissible initial condition will be able to ‘fill the sample space’, i.e., if the process is allowed to run
long enough, the time average will not depend on the initial condition. Medio [2005, p.73] provides
a useful example of an invariant measure that is not ergodic.

16. The complications of trying to produce solutions for the multi-dimensional diffusion case are
well-known in financial economics, e.g., Schwartz (2000). Requisite cross equation restrictions
needed to obtain meaningful solutions can be severe. The extension to a ‘phase space’ approach
where individual points in the space represent a particular state of a complex system is unfamiliar in
financial economics.

17. The phenomenological approach is not without difficulties. For example, the restriction to
Markov processes ignores the possibility of invariant measures that are not Markov. In addition, an
important analytical construct in bifurcation theory, the Lyapunov exponent, can encounter difficulties
with certain invariant Markov measures. Primary concern with the properties of the stationary
distribution is not well suited to analysis of the dynamic paths around a bifurcation point. And so it
goes.

18. A diffusion process is ‘regular’ if starting from any point in the state space /, any other point in
I can be reached with positive probability (Karlin and Taylor [41, p.158]). This condition is distinct
from other definitions of regular that will be introduced: ‘regular boundary conditions’ and ‘regular
S-L problem’.

19. The classification of boundary conditions is typically an important issue in the study of solutions
to the forward equation. Important types of boundaries include: regular; exit; entrance; and natural.
Also important in boundary classification are: the properties of attainable and unattainable; whether
the boundary is attracting or non-attracting; and whether the boundary is reflecting or absorbing. In
the present context, regular, attainable, reflecting boundaries are usually being considered, with a few
specific extensions to other types of boundaries. In general, the specification of boundary conditions
is essential in determining whether a given PDE is self-adjoint

20. Heuristically, if the ergodic process runs long enough, then the stationary distribution can be used
to estimate the constant mean value. This definition of ergodic is appropriate for the one-dimensional
diffusion cases considered in this paper. Other combinations of transformation, space and function
will produce different requirements. Various theoretical results are available for the case at hand.
For example, the existence of an invariant Markov measure and exponential decay of the
autocorrelation function are both assured.

21. For ease of notation it is assumed that ¢, = 0. In practice, solving (1) combined with (3)-(5)
requires a and b to be specified. While a and b have ready interpretations in physical applications,
e.g., the heat flow in an insulated bar, determining these values in economic applications can be more
challenging. Some situations, such as the determination of the distribution of an exchange rate
subject to control bands (e.g., Ball and Roma [66]), are relatively straight forward. Other situations,
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such as profit distributions with arbitrage boundaries or output distributions subject to production
possibility frontiers, may require the basic S-L framework to be adapted to the specifics of the
modeling situation.

22. The mathematics at this point are heuristic. More appropriate would be to observe that U* is
the special case where U = ¥[x], a strictly stationary distribution. This would require discussion of
how to specify the initial and boundary conditions to ensure that this is the solution to the forward
equation.

23. A more detailed mathematical treatment can be found in de Jong [67].

24. In what follows, except where otherwise stated, it is assumed that 6 = 1. Hence, the condition
that K be a constant such that the density integrates to one incorporates the ¢ = 1 assumption.
Allowing ¢ # 1 will scale either the value of K or the 3’s from that stated.

25. A number of simplifications were used to produce the 3D image in Figure 1: x has been centered
about u; and, o = K, = 1. Changing these values will impact the specific size of the parameter values
for a given x but will not change the general appearance of the density plots.



