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ABSTRACT

What role have theoretical methods initially developed in physics played in the progress of financial

economics? What is the relationship between financial economics and econophysics?  What is the

relevance of the ‘ergodicity hypothesis’ to financial economics?  This paper addresses these questions

by reviewing the etymology and history of the ergodicity hypothesis from the introduction of the

concept in 19th century statistical mechanics until the emergence of econophysics during the 1990's.

An explanation of ergodicity is provided that establishes a connection to the fundamental problem of

using non-experimental data to verify theoretical propositions in financial economics.  The historical

evolution of the ergodicity assumption in the ex post / ex ante quandary confronting important

theories in financial economics is also examined.
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distribution.
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 Ergodicity, Econophysics and

Financial Economics

1. Introduction

   At least since Markowitz (1952) initiated modern portfolio theory (MPT), it has often been

maintained that the tradeoff between systematic risk and expected return is the most important

theoretical element of financial economics, e.g., Campbell (1996).   Following Mirowski (1984), the

static equilibrium methods used to develop MPT results such as the capital asset pricing model can

be traced to mathematical concepts developed from the deterministic ‘rational mechanics’ approach

to 19th century physics.   In the years since Markowitz (1952), financial economics has featured

further contributions that employ alternative methods adapted from more recent contributions to

physics, including the diffusion processes employed by Black and Scholes (1973) to determine option

prices and the stable Paretian models of Fama and Mandelbrot to estimate the distribution of stock

prices.   The emergence of econophysics during the last decade of the twentieth century, e.g.,

Roehner (2002), has also provided a variety of theoretical and empirical methods adapted from

physics –  ranging from statistical mechanics to chaos theory –  to analyze financial phenomena.  Yet,

despite considerable overlap in method, contributions to econophysics have gained limited attention

in financial economics.  Similarly, econophysicists generally consider financial economics to be

primarily concerned with a core theory that is inconsistent with the empirical orientation of physical

theory.

    Physical theory has evolved considerably from the constrained optimization, static equilibrium

approach which underpins MPT.  In detailing historical developments in physics since the 19th

century, it is conventional to jump from the determinism of rational mechanics to quantum mechanics

to recent developments in chaos theory, overlooking the relevance of the initial steps toward
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modeling the stochastic behavior of physical phenomena by Ludwig Boltzmann (1844-1906), James

Maxwell (1831-1879) and Josiah Gibbs (1839-1903).  As such, there is a point of demarcation

between the intellectual histories of financial economics and econophysics that can, arguably, be

traced to the debate over energistics around the end of the 19th century.  While the evolution of

physics after energistics involved the introduction and subsequent development of stochastic

concepts, fueled by the emergence of MPT following Markowitz, financial economics incorporated

empirical methods aimed at generalizing and testing the capital asset pricing model and other elements

of MPT.1  Significantly, stochastic generalization of the static equilibrium approach required the

adoption of ‘time reversible’ probabilistic models, especially the  likelihood functions associated with

stationary distributions.

   In contrast, from the early ergodic models of Boltzmann to the fractals and chaos theory of

Mandlebrot, physics has employed a wider variety of stochastic models aimed at capturing key

empirical characteristics of various physical problems at hand.  These models typically have a

mathematical structure that varies substantively from the constrained optimization techniques of

MPT, restricting the straightforward application of many physical models to this component of

financial economics. Yet, the demarcation between physics and financial economics was blurred

substantively by the introduction of diffusion model techniques to solve contingent claims valuation

problems important in ‘financial engineering’.  Following contributions by Sprenkle (1962) and

Samuelson (1965), Black and Scholes (1973) and Merton (1973) provided an empirically viable

method of using diffusion methods to determine a partial differential equation that can be solved for

an option price.  Use of Ito’s lemma to solve stochastic optimization problems is now commonplace

in financial economics, e.g., Brennan and Schwartz (1979).  In spite of the considerable progression
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of techniques employed in physics into financial economics, overcoming the difficulties of applying

models developed for physical situations to fit the empirical properties of economic phenomena is still

the central problem confronting econophysics.

   Schinckus (2010, p.3816) accurately recognizes that the positivist philosophical foundation of

econophysics depends fundamentally on empirical observation: “The empiricist dimension is probably

the first positivist feature of econophysics”.  Following McCauley (2004) and others, this concern

with empiricism often focuses on the identification of macro-level statistical regularities that are

characterized by the scaling laws identified by Mandelbrot (1997) and Mandlebrot and Hudson (2004)

for financial data.  Unfortunately, this empirically driven ideal is often confounded by the ‘non-

repeatable’ experiment that characterizes most observed economic and financial data.  There is

quandary posed by having only a single observed ex post time path to estimate the distributional

parameters for the ensemble of ex ante time paths needed to make decisions involving future values

of financial variables.  In contrast to physical sciences, in the human sciences there is no assurance

that ex post statistical regularity translates into ex ante forecasting accuracy.  Resolution of this

quandary highlights the usefulness of employing a ‘phenomenological’ approach to defining the

boundary between financial economics and econophysics.

   To this end, this paper provides an etymology and history of the ‘ergodicity hypothesis’ in 19th

century statistical mechanics.  Subsequent use of ergodicity in financial economics is also examined.

A classical interpretation of ergodicity is provided that uses Sturm-Liouville theory, a mathematical

method central to classical statistical mechanics  pioneered by Boltzmann (Nolte 2010), to decompose

the transition probability density of a one-dimensional diffusion process subject to regular upper and

lower reflecting barriers.  The decomposition divides the transition density of an ergodic process into
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a limiting stationary density which is independent of time and initial condition, and a power series of

time and boundary dependent transient terms.  In contrast, empirical theory aimed at estimating

relationships from financial economics typically ignores the implications of the initial and boundary

conditions that generate transient terms and focuses on properties of limiting stationary densities with

finite parameters.  To illustrate the implications of the expanded class of ergodic processes available

to econophysics, properties of the quartic exponential stationary density are considered and used to

assess the role of the ergodicity hypothesis in the ex post / ex ante quandary confronting important

theories in financial economics. 

2.  A Brief History of Ergodic Theory

   The Encyclopedia of Mathematics (2002) defines ergodic theory as the “metric theory of dynamical

systems.  The branch of the theory of dynamical systems that studies systems with an invariant

measure and related problems.”  This modern definition implicitly identifies the birth of ergodic theory

with proofs of the mean ergodic theorem by von Neumann (1932) and the pointwise ergodic theorem

by Birkhoff (1931).  These early proofs have had significant impact in a wide range of modern

subjects.  For example, the notions of invariant measure and metric transitivity used in the proofs are

fundamental to the measure theoretic foundation of modern probability theory (Doob 1953; Mackey

1974). Building on a seminal contribution to probability theory, Kolmogorov (1933), in the years

immediately following it was recognized that the ergodic theorems generalize the strong law of large

numbers. Similarly, the equality of ensemble and time averages – the essence of the mean ergodic

theorem –  is necessary to the concept of a strictly stationary stochastic process.  Ergodic theory is

the basis for the modern study of random dynamical systems, e.g., Arnold (1988).  In mathematics,

ergodic theory connects measure theory with the theory of transformation groups.  This connection
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is important in motivating the generalization of harmonic analysis from the real line to locally compact

groups.

   From the perspective of modern mathematics, statistical physics or systems theory, Birkhoff (1931)

and von Neumann (1932) are excellent starting points for a history of ergodic theory.  Building on

the ergodic theorems, subsequent developments in these and related fields have been dramatic.  These

contributions mark the solution to a problem in statistical mechanics and thermodynamics that was

recognized sixty years earlier when Ludwig Boltzmann introduced the ergodic hypothesis to permit

the theoretical phase space average to be interchanged with the measurable time average.  From the

perspective of both econophysics and financial economics, the selection of the less formally correct

and rigorous contributions of Boltzmann are a more auspicious beginning for a history of the ergodic

hypothesis.  Problems of interest in mathematics are generated by a range of subjects, such as physics,

chemistry, engineering and biology.  The formulation and solution of physical problems in, say,

statistical mechanics or particle physics will have mathematical features which are inapplicable or

unnecessary  in financial economics.  For example, in statistical mechanics, points in the phase space

are often multi-dimensional functions representing the mechanical state of the system, hence the

desirability of a group-theoretic interpretation of the ergodic hypothesis.  From the perspective of

financial economics, such complications are largely irrelevant and an alternative history of ergodic

theory that captures the etymology and basic physical interpretation is more revealing than a history

that focuses on the relevance for mathematics.  This arguably more revealing history begins with the

formulation of theoretical problems that von Neumann and Birkhoff were able to solve.

   Mirowski (1984; 1989a, esp. ch.5) establishes the importance of 19th century physics in the

development of the neoclassical economic system advanced by W. Stanley Jevons (1835-1882) and
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Leon Walras  (1834-1910) during the marginalist revolution of the 1870's.  As such, neoclassical

economic theory inherited essential features of mid-19th century physics: deterministic rational

mechanics; conservation of energy; and the non-atomistic continuum view of matter that inspired the

energetics movement later in the 19th century.2  From neoclassical economics, MPT inherited a variety

of static equilibrium techniques and tools such as mean-variance utility functions and constrained

optimization.  Important neoclassical economists such as Samuelson and Hicks made early

contributions to financial economics.  As such, failings of neoclassical economics identified by

econophysicists also apply to central propositions of modern portfolio theory.  Included in the failings

is an over-emphasis on theoretical results at the expense of identifying models that have greater

empirical validity, e.g., Roehner (2002).  It was during the transition from rational to statistical

mechanics during the last third of the century that Boltzmann made the contributions that led to the

transformation of theoretical physics from the microscopic mechanistic models of Rudolf Clausius

(1835-1882) and James Maxwell to the macroscopic probabilistic theories of Josiah Gibbs and Albert

Einstein (1879-1955).3  Coming largely after the start of the marginalist revolution in economics, this

fundamental transformation in theoretical physics had little impact on the progression of financial

economics until the appearance of contributions on continuous time finance that started in the 1960's

and culminated in Black and Scholes (1973).  The deterministic mechanics of the energistic approach

was well suited to the axiomatic formalization of neoclassical economic theory which culminated in

the von Neumann and Morgenstern expected utility approach to modeling uncertainty and the

Bourbaki inspired Arrow-Debreu general equilibrium theory, e.g., Weintraub (2002).

   Having descended from the deterministic rational mechanics of mid-19th century physics, defining

works of neoclassical economics, such as Hicks (1939) and Samuelson (1947), do not capture the
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probabilistic approach to modeling systems initially introduced by Boltzmann and further clarified by

Gibbs.4  Mathematical problems raised by Boltzmann were subsequently solved using tools introduced

in a string of later contributions by the likes of the Ehrenfests and Cantor in set theory, Gibbs and

Einstein in physics, Lebesque in measure theory, Kolmogorov in probability theory, Weiner and Levy

in stochastic processes.  Boltzmann was primarily concerned with problems in the kinetic theory of

gases, formulating dynamic properties of the stationary Maxwell distribution –  the velocity

distribution of gas molecules in thermal equilibrium.  Starting in 1871, Boltzmann took this analysis

one step further to determine the evolution equation for the distribution function.  The mathematical

implications of this analysis still resonate in many subjects of the modern era.  The etymology for

“ergodic” begins with an 1884 paper by Boltzmann, though the initial insight to use probabilities to

describe a gas system can be found as early as 1857 in a paper by Clausius and in the famous 1860

and 1867 papers by Maxwell.5

   The Maxwell distribution is defined over the velocity of gas molecules and provides the probability

for the relative number of molecules with velocities in a certain range.  Using a mechanical model that

involved molecular collision, Maxwell (1867) was able to demonstrate that, in thermal equilibrium,

this distribution of molecular velocities was a ‘stationary’ distribution that would not change shape

due to ongoing molecular collision.  Boltzmann aimed to determine whether the Maxwell distribution

would emerge in the limit whatever the initial state of the gas.  In order to study the dynamics of the

equilibrium distribution over time, Boltzmann introduced the probability distribution of the relative

time a gas molecule has a velocity in a certain range while still retaining the notion of probability for

velocities of a relative number of gas molecules.  Under the ergodic hypothesis, the average behavior

of the macroscopic gas system, which can objectively be measured over time, can be interchanged
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with the average value calculated from the ensemble of unobservable and highly complex microscopic

molecular motions at a given point in time.  In the words of Weiner (1939, p.1): “Both in the older

Maxwell theory and in the later theory of Gibbs, it is necessary to make some sort of logical transition

between the average behavior of all dynamical systems of a given family or ensemble, and the

historical average of a single system.”

3.  Use of the Ergodic Hypothesis in Financial Economics

   At least since Samuelson (1976), it has been recognized that empirical theory and estimation in

economics relies heavily on the use of specific stationary distributions associated with ergodic

processes.  As reflected in the evolution of the concept in economics, the specification and

implications of ergodicity have only developed gradually.  The early presentation of ergodicity by

Samuelson (1976) involves the addition of a discrete Markov error term into the deterministic

cobweb model to demonstrate that estimated forecasts of future values, such as prices, “should be

less variable than the actual data”.  Considerable opaqueness about the definition of ergodicity is

reflected in the statement that a “‘stable’ stochastic process ... eventually forgets its past and therefore

in the far future can be expected to approach an ergodic probability distribution” (Samuelson 1976,

p.2).  The connection between ergodic processes and non-linear dynamics that characterizes present

efforts in economics goes unrecognized, e.g., (Samuelson 1976,  p.1, 5).  While some applications

of ergodic processes to theoretical modeling in economics have emerged since Samuelson (1976),

e.g., Horst and Wenzelburger (1984); Bullard and Butler (1993); Dixit and Pindyck (1994),

econometrics has produced the bulk of the contributions.

   Empirical estimation for the deterministic models of neoclassical economics initially proceeded with

the addition of a stationary, usually Gaussian, error term to produce a discrete time general linear
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model (GLM) leading to estimation using ordinary least squares or maximum likelihood techniques.

In financial economics, such early estimations were associated with tests of the capital asset pricing

model such as the “market model”, e.g., Elton and Gruber (1984).  Iterations and extensions of the

GLM to deal with complications arising in empirical estimates dominated early work in econometrics,

e.g., Dhrymes (1974) and Theil (1971), leading to application of generalized least squares estimation

techniques that encompassed autocorrelated and heteroskedastic error terms.  Employing L2 vector

space methods with stationary Gaussian-based error term distributions ensured these early stochastic

models implicitly assumed ergodicity.  The generalization of this discrete time estimation approach

to the class of ARCH and GARCH error term models by Engle and Granger was of such significance

that a Nobel prize in economics was awarded for this contribution, , e.g., Engle and Granger (1987).

By modeling the evolution of the volatility, this approach permitted a limited degree of non-linearity

to be modeled providing a substantively better fit to observed economic time seris.  Financial

economics provides numerous empirical studies comparing the volatility forecasting ability of

GARCH, ‘implied volatility’ and historical volatility for financial variables.  

   The emergence of ARCH, GARCH and related models was part of a general trend toward the use

of inductive methods in economics, often employing discrete, linear time series methods to model

transformed economic variables, e.g., Hendry (1995).  At least since Dickey and Fuller (1979), it has

been recognized that estimates of univariate time series models for many financial times series reveals

evidence of ‘non-stationarity’. A number of approaches have emerged to deal with this apparent

empirical quandary.6  In particular, transformation techniques for time series models have received

considerable attention.  Extension of the Box-Jenkins methodology led to the concept of economic

time series being I(0) – stationary in the level –  and I(1) – non-stationary in the level but stationary
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after first differencing.  Two I(1) economic variables could be cointegrated if differencing the two

series produced an I(0) process, e.g., Hendry (1995).  Extending early work on distributed lags, long

memory processes have also been employed where the time series is only subject to fractional

differencing.  Significantly, recent contributions on Markov switching processes and exponential

smooth transition autoregressive processes have demonstrated the “possibility that nonlinear ergodic

processes can be misinterpreted as unit root nonstationary processes” (Kapetanios and Shin 2011,

p.620).

   The conventional view of ergodicity in economics is reflected by Hendry (1995, p.100): “Whether

economic reality is an ergodic process after suitable transformation is a deep issue” which is difficult

to analyze rigorously.  As a consequence, in the limited number of instances where ergodicity is

examined in economics a variety of different interpretations appear.  In contrast, the ergodic

hypothesis in statistical mechanics is associated with the more physically transparent kinetic gas model

than the often technical and targeted  concepts of ergodicity encountered in modern economics. For

Boltzmann, the ergodic hypothesis permitted the unobserved complex microscopic interactions of

individual gas molecules to obey the second law of thermodynamics, a concept that has limited

application in economics.7  Despite differences in physical interpretation, the problem of modeling

‘macroscopic’ financial variables, such as stock prices, exchange rates or interest rates, when it is not

possible to derive a theory for describing and predicting empirical observations from known first

principles about the (microscopic) rational behavior of individuals and firms.  By construction, this

involves a phenomenological approach to modeling.8

   Even though the formal solutions proposed were inadequate by standards of modern mathematics,

the thermodynamic model introduced by Boltzmann to explain the dynamic properties of the Maxwell
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distribution is a pedagogically useful starting point to develop the implications of ergodicity in

financial economics.  To be sure, von Neumann (1932) and Birkhoff (1931) correctly specify

ergodicity using Lebesque integration – an essential analytical tool unavailable to Boltzmann – but

the analysis is too complex to be of much value to all but the most mathematically specialized

economists.  The physical intuition of the kinetic gas model is lost in the generality of the results.

Using Boltzmann as a starting point, the large number of mechanical and complex molecular collisions

could correspond to the large number of microscopic, atomistic liquidity providers and traders

interacting to determine the macroscopic financial market price.9   In this context, it is variables such

as the asset price or the interest rate or the exchange rate, or some combination, that is being

measured over time and ergodicity would be associated with the properties of the transition density

generating the macroscopic variables.  Ergodicity can fail for a number of reasons and there is value

in determining the source of the failure.  In this vein, there are two fundamental difficulties associated

with the ergodic hypothesis in Boltzmann’s statistical mechanics – reversibility and recurrence – that

have a rough similarity to notions available in econophysics but largely unrecognized in mainstream

economics.10 

    Halmos (1949, p.1017) is a helpful starting point to sort out the differing notions of ergodicity that

arise in range of subjects: “The ergodic theorem is a statement about a space, a function and a

transformation”.  In mathematical terms, ergodicity or ‘metric transitivity’ is a property of

‘indecomposable’, measure preserving transformations.  Because the transformation acts on points

in the space, there is a fundamental connection to the method of measuring relationships such as

distance or volume in the space.  In von Neumann (1932) and Birkhoff (1931), this is accomplished

using the notion of Lebesque measure: the admissible functions are either integrable (Birkhoff) or



12

square integrable (von Neumann). In contrast to, say, statistical mechanics where spaces and

functions account for the complex physical interaction of large numbers of particles, economic theory

can usually specify the space in a mathematically convenient fashion.  For example, in the case where

there is a single random variable, then the space is “superfluous” (Mackey 1974, p.182) as the random

variable is completely described by the distribution.  Multiple random variables can be handled by

assuming the random variables are discrete with finite state spaces.  In effect, conditions for an

‘invariant measure’ can often be assumed in financial economics in order to focus attention on

“finding and studying the invariant measures” (Arnold 1998, p.22) where, in the terminology of

econometrics, the invariant measure usually corresponds to the stationary distribution or likelihood

function.

   The mean ergodic theorem of von Neumann (1932) provides an essential connection to the

ergodicity hypothesis in financial econometrics.  It is well known that, in the Hilbert and Banach

spaces common to econometric work, the mean ergodic theorem corresponds to the strong law of

large numbers.  In statistical applications where strictly stationary distributions are assumed, the

relevant ergodic transformation, L*, is the unit shift operator: L* Ψ[x(t)] = Ψ[L* x(t)] = Ψ[x(t+1)];

[(L*) k]  Ψ[x(t)] = Ψ[x(t+k)]; and {(L*) -k} Ψ[x(t)] = Ψ[x(t-k)] with k being an integer and Ψ[x] the

strictly stationary distribution for x that in the strictly stationary case is replicated at each t.11

Significantly, this reversible transformation is independent of initial time and state.  Because this

transformation can be achieved by imposing strict stationarity on Ψ[x], L* will only work for certain

ergodic processes.  In effect, the ergodic requirement that the transformation be measure preserving

is weaker than the strict stationarity of the stochastic process sufficient to achieve L*.  The

implications of the reversible ergodic transformation L* for heterodox economics are described by
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Davidson (1991, p.331): “In an economic world governed entirely by ergodic processes ... economic

relationships among variables are timeless, or ahistoric in the sense that the future is merely a

statistical reflection of the past”.12

   Employing conventional econometrics in empirical studies, financial economics also requires that

the real world distribution for x(t) be sufficiently similar to those for both x(t+k) or x(t-k), i.e., the

ergodic transformation L* is reversible.  The reversibility assumption is systemic in financial

economics appearing in the use of long estimation periods to determine important variables such as

the “equity risk premium”.  There is a persistent belief that increasing the length or sampling

frequency of a financial time series will improve the precision of a statistical estimate, e.g., Dimson

et al. (2002).  Similarly, focus on the tradeoff between ‘risk and return’ requires the use of unimodal

stationary densities for transformed financial variables such as the rate of return.  The impact of initial

and boundary conditions on financial decision making is generally ignored.  The inconsistency of

reversible processes with key empirical facts, such as the asymmetric tendency for downdrafts in

prices to be more severe than upswings, is ignored in favor of adhering to theoretical models that can

be derived with constrained optimization techniques, e.g., Constantides (2002). 

4. A Phenomenological Interpretation of Ergodicity

   In physics, phenomenology lies at the intersection of theory and experiment.  Theoretical

relationships between empirical observations are modeled without deriving the theory directly from

first principles, e.g., Newton’s laws of motion.  Predictions based on these theoretical relationships

are obtained and compared to further experimental data designed to test the predictions.  In this

fashion, new theories that can be derived from first principles are motivated.  Confronted with non-

experimental data for important financial variables, such as stock prices, interest rates and the like,
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financial economics similarly develops theoretical models that aim to fit the ‘stylized facts’ of those

variables  but are not initially derived directly from ‘first principles’, such as the maximizing behavior

of individuals and firms.  This approach is inherently phenomenological. The inductive approach in

econometrics is an obvious example of phenomenological theorizing in economics, e.g., Hendry

(1995).  Given the difficulties in economics of testing model predictions with ‘new’ experimental data,

econophysics provides a rich variety of mathematical techniques that can be adapted to determining

mathematical relationships among economic variables that explain the ‘stylized facts’.13 

   The evolution of economic theory from the deterministic models of neoclassical economics to  more

modern stochastic models has been incremental and disjointed.  The preference for linear models of

static equilibrium relationships has restricted the application of frameworks from econophysics that

capture more complex non-linear dynamics, e.g., chaos theory; truncated Levy processes.   Yet,

important variables in economics have relatively innocuous sample paths compared to some types of

variables encountered in physics.  There is an impressive range of mathematical and statistical models

that, seemingly, could be applied to almost any physical or economic situation.  If the process can be

verbalized, then a model can be specified.  This begs the question: are there transformations – ergodic

or otherwise –  that capture the basic ‘stylized facts’ of observed financial data?  Significantly, the

random instability in the observed sample paths identified in financial time series  is consistent with

the ex ante stochastic bifurcation of an ergodic process, e.g., Chiarella et al. [31].  In this case, the

associated ex ante stationary densities are multimodal and irreversible, a situation where the mean

calculated from past values of a single, non-experimental ex post realization of the process is not

necessarily informative about the mean for future values.

   Boltzmann was concerned with demonstrating that the Maxwell distribution emerged in the limit
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as t ÷ 4 for systems with large numbers of particles.  The limiting process for t requires that the

system run long enough that the initial conditions do not impact the stationary distribution.  At the

time, two fundamental criticisms were aimed at this general approach: reversibility and recurrence.

In the context of economic time series, reversibility relates to the use of past values of the process

to forecast future values.14  Recurrence relates to the properties of the long run average which

involves the ability and length of time for an ergodic process to return to its stationary state.  For

Boltzmann, both these criticisms have roots in the difficulty of reconciling the second law of

thermodynamics with the ergodicity hypothesis.  Using a Sturm-Liouville methods, it can be shown

that ergodicity requires the transition density of the process to be decomposable into the sum of a

stationary density and a mean zero transient term that captures the impact of the initial condition of

the system on the individual sample paths; irreversibility relates to properties of the stationary density

and non-recurrence to the behavior of the transient term.

   Because the particle movements in a kinetic gas model are contained within an enclosed system,

e.g., a vertical glass tube, classical Sturm-Liouville (S-L) methods can be applied to obtain solutions

for the transition densities.  These results for the distributional implications of imposing regular

reflecting boundaries on diffusion processes are representative of the phenomenonological approach

to random systems theory which: “studies qualitative changes of the densites of invariant measures

of the Markov semigroup generated by random dynamical systems induced by stochastic differential

equations” (Crauel et al.[32, p.27]).15  Because the initial condition of the system is explicitly

recognized, ergodicity in these models takes a different form than that associated with the unit shift

transformation applied to unimodal stationary densities typically adopted in financial economics.  The

ergodic transition densities can be derived as solutions to the forward differential equation associated
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with one-dimensional diffusions.16  The transition densities contain a transient term that is dependent

on the initial condition of the system and boundaries imposed on the state space.  Irreversibility can

be introduced by employing multi-modal stationary densities. 

   The distributional implications of boundary restrictions, derived by modeling the random variable

as a diffusion process subject to reflecting barriers, have been studied for many years, e.g., Feller

(1954).  The diffusion process framework is useful because it imposes a functional structure that is

sufficient for known partial differential equation (PDE) solution procedures to be used to derive the

relevant transition probability densities. Wong (1964) demonstrated that with appropriate

specification of parameters in the PDE, the transition densities for popular stationary distributions

such as the exponential, uniform, and normal distributions can be derived using S-L methods.  This

paper proposes that the S-L framework provides sufficient generality to resolve certain empirical

difficulties arising from key stylized facts in non-experimental economic time series.  In turn, the

framework suggests a method of generalizing economic theory to encompass the nonlinear dynamics

of diffusion processes.  In other words, within the more formal mathematical framework of classical

statistical mechanics, it is possible to reformulate the ergodicity assumption to permit a useful

stochastic generalization of mainstream financial economics.

    The use of the diffusion model to represent the nonlinear dynamics of stochastic processes is found

in a wide range of subjects.  Physical restrictions such as the rate of observed genetic mutation in

biology or character of heat diffusion in engineering or physics often determine the specific

formalization of the diffusion model.  Because physical interactions can be complex, mathematical

results for diffusion models are pitched at a level of generality sufficient to cover such cases.17  Such

generality is usually not required in financial economics.  In this vein, it is possible to exploit
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mathematical properties of bounded state spaces and one dimensional diffusions to overcome certain

analytical problems that can confront continuous time Markov solutions.  The key construct in the

S-L method is the ergodic transition probability density function U which is associated with the

random (economic) variable x at time t ( U = U[x, t | x0]) that follows a regular, time homogeneous

diffusion process.  While it is possible to allow the state space to be an infinite open interval Io = (a,b:

4 # a< b #4 ), a finite closed interval Ic=[ a,b: -4 < a < b < +4 ] or the specific interval Is= [0 =

a < b < 4) are applicable to economic variables.18  Assuming that U is twice continuously

differentiable in x and once in t and vanishes outside the relevant interval, then U obeys the forward

equation (e.g., Gihhman and Skorohod 1979, p.102-4):

M
2

M x
2

B [ x ] U &

M

M x

{ A [ x ] U } '

M U

M t

( 1 )

where: B[x] ( = ½ σ2[x] > 0) is the one half the infinitesimal variance and A[x]  the infinitesimal drift

of the process.  B[x] is assumed to be twice and A[x] once continuously differentiable in x.  Being

time homogeneous, this formulation permits state, but not time, variation in the drift and variance

parameters.

   If the diffusion process is subject to upper and lower reflecting boundaries that are regular and fixed

(-4 < a < b < 4), the “Sturm-Liouville problem” involves solving (1) subject to the separated

boundary conditions:19

M

M x

{ B [ x ] U [ x , t ] } *
x ' a

& A [ a ] U [ a , t ] ' 0 ( 3 )

M

M x

{ B [ x ] U [ x , t ] } *
x ' b

& A [ b ] U [ b , t ] ' 0 ( 4 )

And the initial condition:
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U [ x , 0 ] ' f [ x
0

] where :

m

b

a

f [ x
0

] ' 1 ( 5 )

and f[x0] is the continuous density function associated with x0 where a # x0 # b.  When the initial

starting value, x0, is known with certainty, the initial condition becomes the Dirac delta function,

U[x,0] = δ[ x - x0 ], and the resulting solution for U is referred to as the ‘principal solution’.  Within

the framework of the S-L method, a stochastic process has the ergodic property when the transition

density satisfies:20

lim

t 6 4

U [ x , t | x
0

] '

m

b

a

f [ x
0

] U [ x , t | x
0

] dx
0

' Ψ [ x ]

Important special cases occur for the principal solution (f[x0] =  δ[ x - x0 ]) and when f[x0] is from a

specific class such as the Pearson distributions.  To be ergodic, the time invariant stationary density

Ψ[x] is not permitted to ‘decompose’ the sample space with a finite number of not decomposable sub-

densities, each of which is time invariant.  Such irreversible processes are not ergodic, even though

each of the sub-densities could be restricted to obey the ergodic theorem.  To achieve ergodicity, a

multi-modal stationary density can be used instead of decomposing the sample space using sub-

densities with different means.  In turn, multi-modal irreversible ergodic processes have the property

that the mean calculated from past values of the process are not necessarily informative enough about

the modes of the ex ante densities to provide accurate predictions.

   In order to more accurately capture the ex ante properties of financial time series, there are some

potentially restrictive features in the S-L framework that can be identified.  For example, time

homogeneity of the process eliminates the need to explicitly consider the location of t0.
21  Time

homogeneity is a property that is consistent with ‘ahistorical’ mainstream economic theorizing.  In

the case of U that are consistent with L* (U* hereafter), a time homogeneous and reversible
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stationary distribution governs the dynamics of x(t).  Significantly, while U is time homogeneous,

there are some U consistent with irreversible processes.  A relevant issue for econophysics  is to

determine the extent to which concepts – time homogeneity or reversibility – are inconsistent with

economic processes that capture: liquidity traps in money markets; structural shifts; and, collapsing

conventions in stock markets.  In the S-L framework, the initial state of the system (x0) is known and

the ergodic transition density provides information about how a given point x0 shifts t units along a

trajectory.22  For econometric applications employing a strictly stationary U*, the location of x0 is

irrelevant while U incorporates x0 as an initial condition associated with the solution of a partial

differential equation.

5.  Density Decomposition Results23

   In general, solving the forward equation (1) for U subject to (3), (4) and some admissible form of

(5) is difficult, e.g., Feller (1954), Risken (1989).  In such circumstances, it is expedient to restrict

the problem specification to permit closed form solutions for the transition density to be obtained.

Wong (1964) provides an illustration of this approach.  The PDE (1) is reduced to an ODE by only

considering the strictly stationary distributions arising from the Pearson system.  Restrictions on the

associated Ψ[x] are constructed by imposing the fundamental ODE condition for the unimodal

Pearson system of distributions:

d Ψ [ x ]

dx

'

e
1

x % e
0

d
2

x
2

% d
1

x % d
0

Ψ [ x ]

The transition probability density U for the ergodic process can then be reconstructed by working

back from a specific closed form for the stationary distribution using known results for the solution

of specific forms of the forward equation.  In this procedure, the d0, d1, d2, e0 and e1 in the Pearson
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ODE are used to specify the relevant parameters in (1).  The U for important stationary distributions

that fall within the Pearson system, such as the normal, beta, central t, and exponential, can be derived

by this method.

   The solution procedure employed by Wong (1964) depends crucially on restricting the PDE

problem sufficiently to apply classical S-L techniques.  Using S-L methods, various studies have

generalized the set of solutions for U to cases where the stationary distribution is not a member of

the Pearson system or U is otherwise unknown, e.g., Linetsky (2005).   In order to employ the

separation of variables technique used in solving S-L problems,(1) has to be transformed into the

canonical form of the forward equation.  To do this, the following function associated with the

invariant measure is introduced:

r [ x ] ' B [ x ] exp &

m

x

a

A [ s ]

B [ s ]

ds

Using this function, the forward equation can be rewritten in the form:

1

r [ x ]

M

M x

p [ x ]
M U

M x

% q [ x ] U '

M U

M t

( 6 )

where : p [ x ] ' B [ x ] r [ x ] q [ x ] '

M
2

B

M x
2

&

M A

M x

Equation (6) is the canonical form of equation (1).  The S-L problem now involves solving (6) subject

to appropriate initial and boundary conditions.

     Because the methods for solving the S-L problem are ODE-based, some method of eliminating

the time derivative in (1) is required. Exploiting the assumption of time homogeneity, the

eigenfunction expansion approach applies separation of variables, permitting (6) to be specified as:
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U [ x , t ] ' e
& λ t

n [ x ] ( 7 )

Where n[x] is only required to satisfy the easier-to-solve ODE:

1

r [ x ]

d

d x

p [ x ]
d n

d x

% [ q [ x ] % λ ] n [ x ] ' 0 ( 1
)

)

Transforming the boundary conditions involves substitution of (7) into (3) and (4) and solving to get:

  d

d x

{ B [ x ] n [ x ] } *
x ' a

& A [ a ] n [ a ] ' 0 ( 3
)

)

d

d x

{ B [ x ] n [ x ] } *
x ' b

& A [ b ] n [ b ] ' 0 ( 4
)

)

Significant analytical advantages are obtained by making the S-L problem ‘regular’ which involves

assuming that [a,b] is a closed interval with r[x], p[x] and q[x] being real valued and p[x] having a

continuous derivative on [a,b]; and, r[x] > 0, p[x] > 0 at every point in [a,b].  ‘Singular’ S-L problems

arise where these conditions are violated due to, say, an infinite state space or a vanishing coefficient

in the interval [a,b].  The separated boundary conditions (3) and (4) ensure the problem is self-adjoint

(Berg and McGregor 1966, p.91).

     The S-L problem of solving (6) subject to the initial and boundary conditions admits a solution

only for certain critical values of λ, the eigenvalues.  Further, since equation (1) is linear in U, the

general solution for (7) is given by a linear combination of solutions in the form of eigenfunction

expansions.   Details of these results can be found in Hille (1969, ch. 8), Birkhoff and Rota (1989,

ch. 10) and Karlin and Taylor (1981).   When the S-L problem is self-adjoint and regular the solutions

for the transition probability density can be summarized in the following:

Proposition: Ergodic Transition Density Decomposition

The regular, self-adjoint Sturm-Liouville problem has an infinite sequence of real eigenvalues, 0 = λ0

< λ1 < λ2 < ... with:
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lim

n ÷ 4

λ
n

' 4

To each eigenvalue there corresponds a unique eigenfunction nn / nn[x].   Normalization of the

eigenfunctions produces:

ψ
n

[ x ] '

m

b

a

r [ x ] n
n

2

dx

& 1 / 2

n
n

The ψn[x] eigenfunctions form a complete orthonormal system in L2[a,b].  The unique solution in

L2[a,b] to (1), subject to the boundary conditions (3)-(4) and initial condition (5) is, in general form:

U [ x , t ] ' j

4

n ' 0

c
n

ψ
n

[ x ] e

& λ
n

t

( 8 )

where : c
n

'

m

b

a

r [ x ] f [ x
0

] ψ
n

[ x ] dx

Given this, the transition probability density function for x at time t can be reexpressed as the sum of

a stationary limiting equilibrium distribution associated with the λ0 = 0 eigenvalue, that is linearly

independent of the boundaries, and a power series of transient terms, associated with the remaining

eigenvalues, that are boundary and initial condition dependent:

U [ x , t | x
0

] ' Ψ [ x ] % T [ x , t | x
0

] ( 9 )

where : Ψ [ x ] '

r [ x ]
& 1

m

b

a

r [ x ]
& 1

dx

( 10 )

Using the specifications of λ n , cn, and ψ n , the properties of T[x,t] are defined as:

T [ x , t | x
0

] ' j

4

n ' 1

c
n

e

& λ
n

t

ψ
n

[ x ] '

1

r [ x ]
j

4

n ' 1

e

& λ
n

t

ψ
n

[ x ] ψ
n

[ x
0

] ( 11 )

with :

m

b

a

T [ x , t | x
0

] dx ' 0 and lim

t ÷ 4

T [ x , t | x
0

] ' 0
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This Proposition provides the general solution to the regular, self-adjoint S-L problem of deriving U

when the process is subject to regular reflecting barriers.   Taking the limit as t  ÷ 4 in (9), it follows

from (10) and (11) that the transition density of the stochastic process satisfies the ergodic property.

Considerable effort has been given to determining the convergence behavior of different processes.

The distributional impact of the initial conditions and boundary restrictions enter through  T[x,t |x0].

From the restrictions on T[x,t |x0] in (11), the total mass of the transient term is zero so the mean

ergodic theorem still applies.  The transient only acts to redistribute the mass of the stationary

distribution, thereby causing a change in shape.  The specific degree and type of alteration depends

on the relevant assumptions made about the parameters and initial functional forms.  Significantly,

stochastic generalization of static and deterministic MPT almost always ignore the impact of

transients by only employing parameters of the limiting unimodal stationary distribution component.

   The theoretical advantage obtained by imposing regular reflecting barriers on the diffusion state

space for the forward equation is that an ergodic decomposition of the transition density is assured.

The relevance of bounding the state space and imposing regular reflecting boundaries can be

illustrated by considering the well known solution (e.g., Cox and Miller 1965, p.209) for U involving

a constant coefficient standard normal variate Y(t) = ({x - x0 - µt }/ σ) over the unbounded state space

Io = (4 # x #4).   In this case the forward equation (1) reduces to: ½{M2U / MY 2} = MU / Mt.  By

evaluating these derivatives, it can be verified that the principal solution for U is:

U [ x , t | x
0

] '

1

σ ( 2 π t )

exp &

( x & x
0

& µ t )
2

2 σ
2

t

and as t 6 -4 or  t 6 + 4  then U 6 0 and the stochastic process is nonergodic because it does not

possess a non-trivial stationary distribution.  The mean ergodic theorem fails: if the process runs long
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enough, then U will evolve to where there is no discernible probability associated with starting from

x0 and reaching the neighborhood of a given point x.  In empirical terminology, such processes have

a unit root.  Imposing regular reflecting boundaries is a certain method of obtaining a stationary

distribution and a discrete spectrum (Hansen and Schienkman 1998, p.13]).  Alternative methods,

such as specifying the process to admit natural boundaries where the parameters of the diffusion are

zero within the state space, can give rise to continuous spectrum and raise significant analytical

complexities.  At least since Feller (1954), the search for useful solutions, including those for singular

diffusion problems, has produced a number of specific cases of interest.  However, without the

analytical certainty of the S-L framework, analysis proceeds on a case by case basis.

   One possible method of obtaining a stationary distribution without imposing both upper and lower

boundaries is to impose only a lower (upper) reflecting barrier and construct the stochastic process

such that positive (negative) infinity is non-attracting, e.g., Linetsky (2005); Aït-Sahalia (1999). In

financial economics, this is often achieved by using a mean-reverting drift term in the diffusion

equation, e.g., Schwartz (2000).  In contrast, Cox and Miller [42, p.223-5] use the Brownian motion,

constant coefficient forward equation with x0 > 0, A[x] = µ < 0 and B[x] = ½σ2 subject to the lower

reflecting barrier at x = 0 given in (2) to solve for both the U and the stationary density.  The principal

solution is solved using the ‘method of images’ to obtain:

U [ x , t | x
0

] '

1

σ 2 π t

exp &

( x & x
0

& µ t )
2

2 σ
2

t

% exp &

4 x
0

µ t & ( x & x
0

& µ t )
2

2 σ
2

t

%

1

σ 2 π t

2 µ

σ
2

exp
2 µ x

σ
2

1 & N

x % x
0

% µ t

σ t
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where N[x] is again the cumulative standard normal distribution function.  Observing that A[x] = µ

> 0 again produces U 6 0 as t 6 + 4, the stationary density for A[x] = µ < 0 has the Maxwell form:

Ψ [ x ] '

2 | µ |

σ
2

exp &

2 | µ | x

σ
2

Though x0 does not enter the solution, combined with the location of the boundary at x = 0, it does

implicitly impose the restriction x > 0.  From the Proposition, T[x,t | x0] can be determined as U[x,t

| x0] - Ψ[x].

   Following Linetsky (2005), Veerstraeten (2004) and others, the analytical procedure used to

determine U involves specifying the parameters of the forward equation and the boundary conditions

and then solving for Ψ[x] and T[x,t |x0].   Wong (1964) uses a different approach, initially selecting

a stationary distribution and then solving for U using the restrictions of the Pearson system to specify

the forward equation.  In this approach, the functional form of the desired stationary distribution

determines the appropriate boundary conditions. While application of this approach has been limited

to the restricted class of distributions associated with the Pearson system, it is expedient when a

known stationary distribution, such as the standard normal distribution, is of interest.  More precisely,

let:

Ψ [ x ] '

1

2 π

exp &

x
2

2

, I
o

' ( & 4 < x < 4 )

In this case, the boundaries of the state space are non-attracting and not regular.  Solving the Pearson

equation gives: dΨ[x]/dx = -x Ψ[x] and a forward equation of the OU form:

M
2

U

M x
2

%

M

M x

xU '

M U

M t
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 Following Wong [34, p.268] Mehler’s formula can be used to express the solution for U as:

U [ x , t | x
0

] '

1

2 π ( 1 & e
& 2 t

)

exp

& ( x & x
0

e
& t

)
2

2 ( 1 & e
& 2 t

)

Given this, as t 6 -4 then U 6 0 and as t 6 + 4 then U achieves the stationary standard normal

distribution.

6.  The Quartic Exponential Distribution

   The roots of bifurcation theory can be found in the early solutions to certain deterministic ordinary

differential equations.   Consider the deterministic dynamics described by the pitchfork bifurcation

ODE:

dx

dt

' & x
3

% ρ
1

x % ρ
0

where ρ0 and ρ1 are the ‘normal’ and ‘splitting’ control variables, respectively (e.g., Cobb 1978,

1981).  While ρ0 has significant information in a stochastic context, this is not usually the case in the

deterministic problem so ρ0 = 0 is assumed.  Given this, for  ρ1 # 0, there is one real equilibrium ({dx

/ dt} = 0) solution to this ODE at x = 0 where “all initial conditions converge to the same final point

exponentially fast with time” (Crauel and Flandoli  1998, p.260).  For ρ1 > 0, the solution bifurcates

into three equilibrium solutions x = { 0, ± /ρ1}, one unstable and two stable.  In this case, the state

space is split into two physically distinct regions (at x = 0) with the degree of splitting controlled by

the size of ρ1.  Even for initial conditions that are ‘close’, the equilibrium achieved will depend on the

sign of the initial condition. Stochastic bifurcation theory extends this model to incorporate

Markovian randomness.  In this theory, “invariant measures are the random analogues of deterministic

fixed points” (Arnold 1998, p.469).  Significantly, ergodicity now requires that the component

densities that bifurcate out of the stationary density at the bifurcation point be invariant measures,
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e.g., Crauel et al. (1999, sec.3).  As such, the ergodic bifurcating process is irreversible in the sense

that past ex post sample paths (prior to the bifurcation) cannot reliably be used to generate statistics

for the future ex ante values of the variable (after the bifurcation). 

    It is well known that the introduction of randomness to the pitchfork ODE changes the properties

of the equilibrium solution, e.g., (Arnold (1998, sec.9.2]).  It is no longer necessary that the state

space for the principal solution be determined by the location of the initial condition relative to the

bifurcation point. The possibility for randomness to cause some paths to cross over the bifurcation

point depends on the size of volatility of the process, σ, which measures the non-linear signal to white

noise ratio. Of the different approaches to introducing randomness (e.g., multiplicative noise), the

simplest approach to converting from a deterministic to a stochastic context is to add a Weiner

process (dW(t)) to the ODE. Augmenting the diffusion equation to allow for σ to control the relative

impact of non-linear drift versus random noise produces the “pitchfork bifurcation with additive

noise” (Arnold [9, p.475]) which in symmetric form is:

dX ( t ) ' ( ρ
1

X ( t ) & X ( t )
3

) dt % σ dW ( t )

In economic applications, e.g., Aït-Sahlia [32], this diffusion process is referred to as the double well

process.  While consistent with the common use of diffusion equations in financial economics, the

dynamics of the pitchfork process captured by T[x,t |x0] have been “forgotten” (Arnold [9, p.473]).

   Together with other areas of economics, financial economics is married to the transition probability

densities associated with unimodal stationary distributions.  Yet, it is well know that more flexibility

in the shape of the stationary distribution can be achieved using a higher order exponential density,

e.g., Fisher [37], Cobb et al. [38], Caudel and Flandoli [36].  Increasing the degree of the polynomial

in the exponential comes at the expense of introducing additional parameters resulting in a substantial
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increase in the analytical complexity, typically defying a closed form solution for the transition

densities.  However, at least since Elliott [39], it has been recognized that the solution of the

associated regular S-L problem will still have a discrete spectrum, even if the specific form of the

eigenfunctions and eigenvalues in T[x,t |x0] are not precisely determined (Horsthemke and Lefever

[40, sec. 6.7]) .  Inferences about transient stochastic behavior can often be obtained by examining

the solution of the deterministic non-linear dynamics.  In this process, attention initially focuses on

the properties of the higher order exponential distributions.  

   To this end, assume that the stationary distribution is a fourth degree or “general quartic”

exponential:

Ψ [ x ] ' K exp [ & Φ [ x ] ] ' K exp [ & ( β
4

x
4

% β
3

x
3

% β
2

x
2

% β
1

x ) ]

where: K is a constant determined such that the density integrates to one; and, β4 > 0.24   Following

Fisher [37], the class of distributions associated with the general quartic exponential admits both

unimodal and bimodal densities and nests the standard normal as a limiting case where β4 = β3 = β1

= 0 and β2 = ½ with K = 1/(/2π).   The stationary distribution of the bifurcating double well process

is a special case of the symmetric quartic exponential distribution:

Ψ [ y ] ' K
S

exp [ & { β
2

( x & µ )
2

% β
4

( x & µ )
4

} ] where β
4

$ 0

where µ is the population mean and the symmetry restriction requires β1 = β3 = 0.  Such multi-modal

stationary densities have received scant attention in mainstream economics.  To see why the

condition on β1 is needed, consider change of origin X = Y - {β3 / 4 β4} to remove the cubic term from

the general quartic exponential (Matz [41, p.480]):

Ψ [ y ] ' K
Q

exp [ & { κ ( y & µ
y

) % α ( y & µ
y

)
2

% γ ( y & µ
y

)
4

} ] where γ $ 0

The substitution of y for x indicates the change of origin which produces the following relations
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between coefficients for the general and specific cases:

κ '

8 β
1
β

4

2

& 4 β
2
β

3
β

4
% β

3

3

8 β
4

2

α '

8 β
2
β

4
& 3 β

3

2

8 β
4

γ ' β
4

The symmetry restriction κ = 0 can only be satisfied if both β3 and β1 = 0.  Given the symmetry

restriction, the double well process further requires -α = γ = σ = 1.   Solving for the modes of Ψ[y]

gives ± /{|α| / (2γ)} which reduces to ± 1 for the double well process, as in Ait-Sahlia [32, Figure

6B, p.1385].

INSERT FIGURE 1 HERE

   As illustrated in Figure 1, the selection of  ai in the stationary density Ψi [x] = KQ exp{ -(.25 x4 - .5

x2 - ai x) } defines a family of general quartic exponential densities, where ai is the selected value of

κ for that specific density.25  The coefficient restrictions on the parameters α and γ dictate that these

values cannot be determined arbitrarily.  For example, given that β4 is set at .25, then for ai = 0, it

follows that α = β2 = 0.5.  ‘Slicing across’ the surface in Figure 1 at ai = 0 reveals a stationary

distribution that is equal to the double well density.  Continuing to slice across as ai increases in size,

the bimodal density becomes progressively more asymmetrically concentrated in positive x values.

Though the location of the modes does not change, the amount of density between the modes and

around the negative mode decreases.  Similarly, as ai decreases in size the bimodal density becomes

more asymmetrically concentrated in positive x values.  While the stationary density is bimodal over

ai ε {-1,1}, for |ai| large enough the density becomes so asymmetric that only a unimodal density

appears.  For the general quartic, asymmetry arises as the amount of the density surrounding each

mode (the sub-density) changes with ai.  In this, the individual stationary sub-densities have a

symmetric shape.  To introduce asymmetry in the sub-densities, the reflecting boundaries at a and b
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that bound the state space for the regular S-L problem can be used to introduce positive asymmetry

in the lower sub-density and negative asymmetry in the upper sub-density.

   Following Chiarella et al. [19], the stochastic bifurcation process has a number of features which

are consistent with the ex ante behavior of a securities market driven by a combination of chartists

and fundamentalists.  In particular, because the stationary distributions are multi-modal and depend

on forward parameters – such as κ, α, γ and ai in Figure 1 – that are not known on the decision date,

the rational expectations models employed in mainstream economics are uninformative.  What use

is the forecast provided by E[x(T)] when it is known that there are other x(T) values that are more

likely to occur?  A mean estimate that is close to the bifurcation point would even be unstable.  In a

multi-modal world, complete fundamental uncertainty – where nothing is known about the evolution

of economic variables – is replaced by uncertainty over unknown parameter values that can change

due, say, to the collapse of a market convention.  The associated difficulty of calculating a mean value

forecast or other econometric estimates from past data is compounded by the presence of transients

that originate from boundaries and initial conditions.  For example, the presence of a recent structural

break can be accounted for by appropriate selection of x0.  Of particular relevance to a comparison

of econophysics theories with theories arising in mainstream financial economics is the fundamental

dependence of investment decisions on x0 which is not captured by the reversible ergodic processes

employed in MPT. The theoretical tools available in econophysics are able to demonstrate this

fundamental dependence by exploiting properties of ex ante bifurcating ergodic processes to generate

ex post sample paths that provide a better approximation to the sample paths of observed financial

data.
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7. Conclusion

   The history of the ergodicity hypothesis provides a point of distinction between financial economics

and econophysics.  Using results from classical statistical mechanics, this paper demonstrates that if

economic observations are generated by bifurcating ergodic processes, then the calculation of time

averages based on a sufficiently long enough set of past data can not be expected to provide a

statistically reliable estimate of any ex ante time or space averages that will be observed in a

sufficiently distant future calendar time.  In other words, to deal with the problem of making statistical

inferences from ‘non-experimental’ data, economic theories typically employ stationary densities that

are: reversible; unimodal; and, where initial and boundary conditions have no short or long term

impact.  The possibility of irreversible ergodic processes is not recognized or, it seems, intended.

Significantly, a type of fundamental uncertainty is inherent in bifurcating processes. as illustrated in

the need to select an ai in Figure 1 in order to determine the ex ante stationary density.  A semantic

connection can be established between the subjective uncertainty about encountering a future

bifurcation point and, say, the possible collapse of an asset price bubble due to a change in Keynesian

convention about market valuations.  Examining the quartic exponential stationary distribution

associated with a bifurcating ergodic process, it is apparent that this distribution nests the Gaussian

distribution as a special case.  In this sense, results from classical statistical mechanics available in

econophysics represent a stochastic generalization of the processes employed in the conventional

economic theory.
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Figure 1:*  Family of Stationary Densities for Ψi [x] = KQ exp{ -(.25 x4 - .5 x2 - ai x) }

* Each of the continuous values for a signifies a different stationary density.  For example, at a = 0 the density is the double well density

which symmetric about zero and with modes at ±1.  
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statistical physics was that, even though the behavior of one or two molecules can be completely

determined, it is not possible to generalize these mechanics to the describe the macroscopic motion

of molecules in large, complex systems, e.g., Brush [55, esp. ch.II].

4.  As such, Boltzmann was part of the larger: “Second Scientific Revolution, associated with the

theories of Darwin, Maxwell, Planck, Einstein, Heisenberg and Schrödinger, (which) substituted a

world of process and chance whose ultimate philosophical meaning still remains obscure” (Brush [55,

p.79]).  This revolution superceded the: “First Scientific Revolution, dominated by the physical

astronomy of Copernicus, Kepler, Galileo, and Newton, ... in which all changes are cyclic and all

motions are in principle determined by causal laws.”  The irreversibility and indeterminism of the

Second Scientific Revolution replaces the reversibility and determinism of the First.

5.  There are many interesting sources on these points which provide citations for the historical papers

that are being discussed.  Cercignani [56, p.146-50] discusses the role of Maxwell and Boltzmann in

the development of the ergodic hypothesis.  Maxwell [17] is identified as “perhaps the strongest

statement in favour of the ergodic hypothesis”.  Brush [57] has a detailed account of the development

of the ergodic hypothesis.  Gallavotti [58] traces the etymology of “ergodic” to the ‘ergode’ in an

1884 paper by Boltzmann.  More precisely, an ergode is shorthand for ‘ergomonode’ which is a

‘monode with given energy’ where a ‘monode’ can be either a single stationary distribution taken as

an ensemble or a collection of such stationary distributions with some defined parameterization.  The

specific use is clear from the context.  Boltzmann proved that an ergode is an equilibrium ensemble

and, as such, provides a mechanical model consistent with the second law of thermodynamics.  It is

generally recognized that the modern usage of ‘the ergodic hypothesis’ originates with Ehrenfest [59].

6.  Kapetanios and Shin [28, p.620] capture the essence of this quandary: “Interest in the interface

of nonstationarity and nonlinearity has been increasing in the econometric literature. The motivation

for this development may be traced to the perceived possibility that nonlinear ergodic processes can

be misinterpreted as unit root nonstationary processes. Furthermore, the inability of standard unit root

tests to reject  the null hypothesis of unit root for a large number of macroeconomic variables, which

are supposed to be stationary according to economic theory, is another reason behind the increased

interest.”

7.  The second law of thermodynamics is the universal law of increasing entropy – a measure of the

randomness of molecular motion and the loss of energy to do work.  First recognized in the early 19th

century, the second law maintains that the entropy of an isolated system, not in equilibrium, will

necessarily tend to increase over time. Entropy approaches a maximum value at thermal equilibrium.

A number of attempts have been made to apply the entropy of information to problems in economics,

with mixed success.  In addition to the second law, physics now recognizes the zeroth law of

thermodynamics that “any system approaches an equilibrium state” (Reed and Simon [60, p.54]).

This implications of the second law for theories in economics was initially explored by

Georgescu-Roegen [61].

8.  In this process, the ergodicity hypothesis is required to permit the one observed sample path to

be used to estimate the parameters for the ex ante distribution of the ensemble paths.  In turn, these
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parameters are used to predict future values of the economic variable.

9.  This interpretation of the microscopic collisions differs from Davidson [62, p.332]: “If there is

only one actual economy, and we do not possess, never have possessed and conceptually never will

possess an ensemble of economics worlds, then even a definition of probability distribution functions

is questionable.”  In this context, points in the phase space at time t represent individual realizations

of different macroscopic outcomes for the economic system at t.  This interpretation of the ensembles

is closer to Gibbs than Maxwell.  Precisely how to interpret the ensembles in an economic context

has not been closely examined.  One exception is Nicola [63].

10.  Heterodox critiques are associated with views considered to originate from within economics.

Such critiques are seen to be made by ‘economists’, e.g., Post Keynesian economists, institutional

economists, radical political economists and so on.  Because such critiques take motivation from the

theories of mainstream economics, these critiques are distinct from econophysics.  Following

Schinckus [1, p.3818]: “Econophysicists have then allies within economics with whom they should

become acquainted.”

11.  Dhyrmes [64, p.1-29] discusses the algebra of the lag operator.

12. Critiques of mainstream economics that are rooted in the insights of The General Theory

recognize the distinction between fundamental uncertainty and objective probability. As a

consequence, the definition of ergodic theory in heterodox criticisms of mainstream economics lacks

formal precision, e.g., the short term dependence of ergodic processes on initial conditions is not

usually recognized.  Ergodic theory is implicitly seen as another piece of the mathematical formalism

inspired by Hilbert and Bourbaki and captured in the Arrow-Debreu general equilibrium model of

mainstream economics. 

13.  In this context though not in all contexts, econophysics provides a ‘macroscopic’ approach.  In

turn, ergodicity is an assumption that permits the time average from a single observed sample path

to (phenomenologically) model the ensemble of sample paths.  Given this, econophysics does contain

a substantively richer toolkit that encompasses both ergodic and non-ergodic processes.  Many works

in econophysics implicitly assume ergodicity and develop models based on that assumption.

14.   The connection of the reversibility and recurrence concepts used in this paper with the actual

arguments made during the Boltzmann debates is somewhat tenuous.  For example, the assumption

that the diffusion process is regular deals with the version of the recurrence problem that concerned

Boltzmann.  The objective of introducing these concepts is pedagogy rather than historical accuracy.

15.  The distinction between invariant and ergodic measures is fundamental.  Recognizing a number

of distinct definitions of ergodicity are available, following Medio [65, p.70] the Birkhoff-Khinchin

ergodic (BK) theorem for invariant measures can be used to demonstrate that ergodic measures are

a class of invariant measures.  More precisely, the BK theorem permits the limit of the time average

to depend on initial conditions.  In effect, the invariant measure is permitted to decompose into

invariant ‘sub-measures’.  The physical interpretation of this restriction is that sample paths starting
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from a particular initial condition may only be able to access a part of the sample space, no matter

how long the process is allowed to run.  For an ergodic process, sample paths starting from any

admissible initial condition will be able to ‘fill the sample space’, i.e., if the process is allowed to run

long enough, the time average will not depend on the initial condition.  Medio [2005, p.73] provides

a useful example of an invariant measure that is not ergodic.

16.  The complications of trying to produce solutions for the multi-dimensional diffusion case are

well-known in financial economics, e.g., Schwartz (2000).  Requisite cross equation restrictions

needed to obtain meaningful solutions can be severe.  The extension to a ‘phase space’ approach

where individual points in the space represent a particular state of a complex system is unfamiliar in

financial economics.

17.  The phenomenological approach is not without difficulties.  For example, the restriction to

Markov processes ignores the possibility of invariant measures that are not Markov.  In addition, an

important analytical construct in bifurcation theory, the Lyapunov exponent, can encounter difficulties

with certain invariant Markov measures.  Primary concern with the properties of the stationary

distribution is not well suited to analysis of the dynamic paths around a bifurcation point.  And so it

goes.

18.  A diffusion process is ‘regular’ if starting from any point in the state space I, any other point in

I can be reached with positive probability (Karlin and Taylor [41, p.158]).  This condition is distinct

from other definitions of regular that will be introduced: ‘regular boundary conditions’ and ‘regular

S-L problem’.

19.  The classification of boundary conditions is typically an important issue in the study of solutions

to the forward equation.  Important types of boundaries include: regular; exit; entrance; and natural.

Also important in boundary classification are: the properties of attainable and unattainable; whether

the boundary is attracting or non-attracting; and whether the boundary is reflecting or absorbing.  In

the present context, regular, attainable, reflecting boundaries are usually being considered, with a few

specific extensions to other types of boundaries.  In general, the specification of boundary conditions

is essential in determining whether a given PDE is self-adjoint 

20.  Heuristically, if the ergodic process runs long enough, then the stationary distribution can be used

to estimate the constant mean value.  This definition of ergodic is appropriate for the one-dimensional

diffusion cases considered in this paper.  Other combinations of transformation, space and function

will produce different requirements.  Various theoretical results are available for the case at hand.

For example, the existence of an invariant Markov measure and exponential decay of the

autocorrelation function are both assured.

21.    For ease of notation it is assumed that t0 = 0. In practice, solving (1) combined with (3)-(5)

requires a and b to be specified.  While a and b have ready interpretations in physical applications,

e.g., the heat flow in an insulated bar, determining these values in economic applications can be more

challenging.  Some situations, such as the determination of the distribution of an exchange rate

subject to control bands (e.g., Ball and Roma [66]), are relatively straight forward.  Other situations,
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such as profit distributions with arbitrage boundaries or output distributions subject to production

possibility frontiers, may require the basic S-L framework to be adapted to the specifics of the

modeling situation.

22.  The mathematics at this point are heuristic.  More appropriate would be to observe that U* is

the special case where U = Ψ[x], a strictly stationary distribution.  This would require discussion of

how to specify the initial and boundary conditions to ensure that this is the solution to the forward

equation.

23.  A more detailed mathematical treatment can be found in de Jong [67].

24.  In what follows, except where otherwise stated, it is assumed that σ = 1.  Hence, the condition

that K be a constant such that the density integrates to one incorporates the σ = 1 assumption.

Allowing σ … 1 will scale either the value of K or the β’s from that stated. 

25.  A number of simplifications were used to produce the 3D image in Figure 1: x has been centered

about µ; and, σ = KQ = 1.  Changing these values will impact the specific size of the parameter values

for a given x but will not change the general appearance of the density plots.


