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Securities Markets, Diffusion State Processes, and
Arbitrage-Free Shadow Prices
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Abstract

This paper develops the parametric restrictions imposed on diffusion state processes by
the requirement of arbitrage-free asset pricing. Using the equivalent martingale measure
as a starting point, the diffusion property is exploited to specify the shadow pricing func-
tion, which takes conditional state variable probabilities under the reference measure into
arbitrage-free contingent claim prices. The main results of the paper provide differential
equations associated with the shadow price function that are used to identify restrictions on
the parameters of assumed diffusion processes. The paper concludes with an application
to the CIR model where the state variable, the instantaneous interest rate, is assumed to
follow a square root process. Calculations are also provided for the parametric restrictions
imposed on the Brownian bridge and OU state variable processes.

. Introduction

Analysis of arbitrage-free price systems is fundamental to the study of stochas-
tic equilibria in securities markets, e.g., Harrison and Kreps (1979), Harrison and
Pliska (1981), (1983), Kreps (1981), Huang (1985), Taqqu and Willinger (1987),
Duffie (1986), Back and Pliska (1991), Cheng (1991), and Flesaker (1993). Much
of this work is concerned with establishing or applying the conditions required for
an absence of arbitrage when security prices follow diffusions, i.e., when the com-
modity or state space is infinite dimensional. In this case, with “great generality,”
it has been shown that the existence of an equivalent martingale measure implies
an absence of arbitrage opportunities, although the converse is not necessarily true
(Back and Pliska (1991)). Given an equivalent martingale measure, it is possible
to derive a functional relationship between assumed empirical specifications for
state variables, e.g., OU interest rates (Rabinovitch (1989)) or geometric Brownian
motion (Black and Scholes (1973)), and the associated shadow prices required to
support the arbitrage-free equilibrium. Extending a notion originally proposed
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by Garman (1977), the primary objective of this paper is to develop the paramet-
ric restrictions this shadow price function imposes when the empirical reference
measure is defined by a diffusion.

As conceived here, the practical relevance of the shadow pricing restric-
tions arises from the conventional practice in financial economics of constructing
derivative security pricing models in a partial equilibrium setting. This approach is
analytically convenient because it can exploit the riskless hedge portfolio construc-
tion to avoid the complications associated with directly specifying investor pref-
erences. Using the equivalent martingale measure approach, absence-of-arbitrage
restrictions on the coefficients of diffusion processes are imposed by the Cameron-
Martin-Girsanov theorem, which gives the technical conditions the parameters
must obey in order for the transformation of measure to be admissible. Cheng
(1991) exploits these conditions to demonstrate that the Brownian bridge process
is not an admissible process for bond prices. Unfortunately, this method of check-
ing whether a given diffusion process is consistent with absence-of-arbitrage will,
typically, be analytically complicated, e.g., due to the need to evaluate path inte-
gral conditions. A simplified method of evaluating conditions on a given diffusion
process is required. By construction, such a simplification would apply only under
somewhat more restrictive conditions.

Another approach, closely related to the equivalent martingale theory, is to
derive the absence-of-arbitrage restrictions using general equilibrium, representa-
tive investor models as in Bick (1990) and He and Leland (1993). These papers
ask the question: for a given set of diffusion asset price processes, what conditions
must be imposed on the coefficients of the diffusion processes to ensure that these
price processes can be supported by a representative investor? In a simplified
equilibrium model, Bick shows that if the value of the market portfolio follows
a specified diffusion process, the representative investor must have a certain util-
ity function. Necessary and sufficient conditions, stated in terms of conditional
moments of prices, are, provided for the existence of the utility function. These
conditions are used to show that, for nondividend-paying securities, the OU pro-
cess is not consistent with arbitrage-free equilibrium. He and Leland show that
for an equilibrium supported by a representative investor, it is necessary and suffi-
cient that the coefficients of the market portfolio diffusion process satisfy a partial
differential equation and a boundary condition. They show that in the special case
where the equilibrium prices are time-homogenous diffusions, their conditions are
the same as Bick’s. In the more general case, their approach is different from
Bick’s, but is simpler to apply in that it avoids the need to compute the conditional
expected utility function.

The general equilibrium approach requires explicit modeling of both aggre-
gate wealth dynamics and the preferences of the representative investor. This
approach has produced a number of interesting results regarding the relationship
between a given preference assumption and arbitrage-free equilibrium (Breeden
and Litzenberger (1978), Brennan (1979), and Bick (1987), (1990)). For example,
it has been shown that a partial equilibrium assumption of geometric Brownian
motion for stock prices is consistent with an arbitrage-free general equilibrium
supported by constant proportional risk aversion. However, for purposes of evalu-
ating restrictions on the coefficients of a given diffusion process, it is necessary to
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construct a general equilibrium solution. In addition to the diffusion process for
the state variable of interest, this also requires modeling aggregate wealth dynam-
ics and determining a solution for all the other endogenous variables, including
aggregate wealth. In addition to being analytically complex, e.g., Cox, Ingersoll,
and Ross (1985a, b), it is not immediately apparent whether the diffusion coeffi-
cient restrictions depend fundamentally on the specific preference and aggregate
wealth assumptions invoked to derive the general equilibrium.

This paper develops the absence-of-arbitrage restrictions on the coefficients
of the relevant diffusion process by deriving the shadow price function associated
with the equivalent martingale measure. In this case, the shadow price function
is defined as the ratio of the conditional density function of asset prices under
the assumed diffusion process and the conditional density function of asset prices
under the risk-neutral, or equivalent martingale, measure, normalized by the price
of the riskless asset. In this case, for any given distribution of some asset pay-
off function, the product of the shadow price and the payoff, integrated over the
distribution of the payoff, gives the arbitrage-free price of that asset. Using this ap-
proach requires a number of assumptions, e.g., that asset markets are dynamically
complete, which permits the risk-neutral probability density to be uniquely deter-
mined. Because the absence-of-arbitrage conditions depend on differentiating the
shadow price function with respect to the state variables, another key assumption
is path independence. In effect, the shadow price function is assumed to be deter-
mined only by current asset prices, not the past history of prices. Finally, because
the results are motivated by assuming the existence of an equivalent martingale
measure, only sufficient conditions for absence-of-arbitrage are provided (Back
and Pliska (1991)).

Section II provides the basic structure required to develop the results. Re-
strictions needed to derive arbitrage-free price trajectories associated with diffusion
state processes are identified. In Section I1I, the concept of the shadow price func-
tion is derived and the connection to the more familiar Radon-Nikodym derivative
discussed. Section IV develops the differential properties of the shadow price
function. These properties are used to derive the fundamental restrictions on the
coefficients of the assumed diffusion process. Section V provides a number of
applications. Initially, both the OU and Brownian bridge processes are considered
within a simplified valuation framework. An example extending the results to the
general state variable case is also considered. This involves deriving the shadow
price function for a state variable, the instantaneous interest rate, which follows a
square root process. The one-state variable partial equilibrium case is compared
with the two-state variable general equilibrium of Cox, Ingersoll, and Ross (CIR
hereafter) (1985a, b). It is demonstrated that, for judicious choice of the diffusion
process, the shadow price function is the indirect marginal utility for a representa-
tive investor with log utility preferences. Finally, Section VI provides a summary
of the main results contained in the paper.

Il. Assumptions and Structure

The initial point of reference is the equivalent martingale theory. Specifically,
the structure of the model is based on the complete basic probability space (W,
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F, P), which fully describes the exogenous environment. The assumed empiri-
cal reference measure P represents the unanimously held subjective probability
assessments of the agents in the economy. The random state variable function
s(t,w) = s(t), where w € W maps the basic probability space into the measurable
phase space (A, ®), i.e., the n x 1 vector s(f) € A with ¢ € [0,T]. By definition,
d? € & is a n-dimensional volume element ds;,ds, ...ds, surrounding point s.
Because A = R" in the present case, a particular value of s(¢) represents a point
in n-dimensional Euclidean phase space with coordinates (s, s2,...,5,)(f). The
behavior of the s(t) over time also defines a space of rrajectories (or sample func-
tions) that determine the filtration (or information structure) F. Contained in the set
F is the increasing family of o-fields F, = o{s(u); u < t}, t € [0,T]. It is further
required that F, € F are right continuous with finite left limits where Fo = {W,
null sets of P} and Fr = F.

In general, defined on (F, F,) is a family of probability measures Q;, which
are “equivalent” to P in the sense that both the Qs and P have the same null sets.
Each Q is related to P through the Radon-Nikodym (RN) derivative relation,

4 dQ, = h.dP whereh, € L%,

where the index m is defined on K, an appropriately specified parameter space
(Grenander (1981)). Associated with 4, is the conditional expectation h,, =
E(hy,|F,), which is a martingale under P. In cases where the stochastic process for
the state variable is exogenously specified, it is assumed that the empirical reference
measure is known and indexing by m is not relevant. However, reference to the
m index will be of importance where the selection of 4 is treated as an estimation
problem, e.g., Feigen (1976). In the case of dynamically complete markets, one
of the Q measures takes the form of a unique “equivalent martingale measure”
Q* for which the appropriately specified asset price process is a martingale with
respect to F. Jarrow and Madan (1991) and others provide further details of the
conditions required for the uniqueness of the equivalent martingale measure.

In addition to the equivalent measures, adapted to the {F,} in the general
equilibrium are n + 1 asset price processes {p;} i = 0,1,2,...,n, assumed to be
square integrable.' In the conventional case where the state variables are defined
to be asset prices, the {p;} are taken to be functions of the filitrations generated by
the state variables and, as a result, are measurable {F,}. However, in the general
state variable case where nonprice variables such as interest rates, inflation, etc.,
are included as state variables, the validity of assuming measurability is more
complicated. In order to avoid conceptual confusion, it is expedient to take the
state variables to be asset prices, even though such an assumption is not necessary
to derive the results. The method of extending the results to include the general
state variable case is considered in Section V. Another possible source of confusion
concerns specification of the numeraire, the price of the riskless asset pp, which can

IThe assumption of square integrability can be weakened (e.g., Back and Pliska (1991)). In
addition, the underlying assumption here is that the # + 1 assets are sufficient to complete the market.
It is not clear in all cases that the dimension of the span is known (e.g., Kreps (1981)). However,
under appropriate conditions (Ingersoll (1989), Jarrow and Madan (1991)), these n + 1 asset values
are sufficient to span the state space. In particular, the diffusion state space assumption is sufficient to
ensure spanning of the n states with n + 1 assets (e.g., Duffie (1986), p. 1173).
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be specified in a number of possible ways.? For present purposes, the numeraire is
specified as dollars. This requires the corresponding (pg) asset to pay a dividend,
ry, the instantaneous riskless interest rate. While for analytical convenience in
deriving absence-of-arbitrage conditions it is often assumed that r = 0, in general,
this need not be the case. As it turns out, this point is of particular relevance to
partial equilibrium models where the state variable of interest is not a price, e.g.,
the square root interest rate process in CIR (1985a, b).

In order to model the general state variable case, it is important to recog-
nize that the shadow price function depends intimately on the state variable risk
premia. In general, associated with the » state variables are risk premia for each
si, 1 = 1,2,...,n, which reflect the market price of risk. When the state vari-
ables are assumed to be prices, then these risk premia can be postulated based
on the observed dividend behavior and the coefficients of the assumed diffusion
processes. In this case, asset prices and risk premia are specified to reflect expecta-
tions about both future capital gains and dividends. The general state variable case
is somewhat more complicated. Because the risk premia must be specified in a
nonarbitrary fashion, this requires creating notional securities whose prices mimic
the behavior of the nonprice state variables by permitting dividend payments on
the securities, where required, to adjust prices to reflect the uncertainty associated
with the underlying state variables. The resulting restrictions on the risk premia of
the nonprice state variables required for arbitrage-free equilibrium are determined
in the process of deriving the appropriate shadow price function.

Given this background, the probability space, the set of trading dates, the in-
formation structure, and the price processes constitute a “securities market model.”
Through the introduction of a convex, continuous (L2 norm topology), and strictly
increasing preference relation over “net trade vectors,” the concept of an arbitrage-
free price system was initially developed by Harrison and Kreps (1979) who
demonstrated a fundamental connection to the “equivalent martingale measure”
Q* for which a zero-dividend asset price process is a martingale with respect to
F. Hence, even in the equivalent martingale approach, the process of changing
from the empirical to the equivalent martingale measure involves a mapping that
is directly connected to preferences, with P corresponding to a convex, risk-averse
set of preferences, and Q* a risk-neutral probability density, e.g., Back and Pliska
(1991). In terms of the state variable processes, the change of measure involves
transforming a stochastic process with drift, under P, into another process with-
out drift, under Q*. When the state variables are characterized as diffusions, the
Cameron-Martin-Girsanov theorem gives the technical conditions that the relevant
empirical processes must obey in order for the transformation of measure to be
admissible, e.g., Cheng (1991).

In general, less functional structure than the diffusion assumption is required
to develop the requisite theory. However, for present purposes, the diffusion as-
sumption allows immediate application of the Kolmogorov equations to the prob-

2Itis conventional to assume that the numeraire at time t is the price of a pure discount, zero-coupon
bond that matures at time T, at which time it pays $1. However, other approaches are possible. In the
present case, simplification is provided by allowing the numeraire to be a pure floating coupon bond
that pays interest continuously and instantaneously adjusts the coupon payment such that the value of
the bond is $1 at all times ¢ € {0, T].
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ability distributions of the state processes. The martingale equivalence condition
can then be exploited to develop properties of the mapping from the empirical ref-
erence measure into arbitrage-free constructions. Specifically, if the state variables
follow a diffusion, the conditional probability density p satisfies the forward equa-
tion (e.g., Amnold (1974)). The relationship between the conditional probability
density and the reference measure is

(2) p(s,t;50,0) = /P(dw|s0,t0) = /dP,
AR A

where so = s(fp) and 0 < fy <t < T; A(dS2,1) € F is the set of s trajectories that
begin at (sg, %) and end at ¢ in df2 (i.e., centered at s). In words, p(s, t; So, fp) 1S
the conditional probability that, starting from (so, fp), at time ¢, a realization of the
vector lies in the n-dimensional volume element df2 surrounding the point s(z).
As with the reference measure P, the properties of p depend on the nature of the
filtration F, i.e., the conditional expectation depends only on current and future
values of s and ¢, not the past values.

Ill. The Shadow Price Function

Given the existence of an equivalent martingale measure, the method of ob-
taining p from P can now be applied to Q* to specify the transition probability
density ~,; associated with the arbitrage-free price processes,

3 Vr (5,8 50, 80) = / Q*(dw) where /fy,rd.Q = 1.
AR A

With appropriate adjustment for the effect of the numeraire, the density, 7, can be
used to provide an interpretation of the arbitrage-free price vector over the phase
space. In particular, because 7, is the transition probability density for a diffusion,
it is possible to define ,

{

4) w(s,t50.00) = /(b(aJ)Q*(dw) = / exp /—r(w,u)du dQ*,
A A

fo

where ¢(w) is the appropriate discounting or normalizing factor, which, using the
conventional method selected to specify the numeraire, is set equal to the ratio
of pure discount bond prices at time (s, ) and at s, 1.2 The ratio of these two
prices defines the interest rate discounting factor ¢(w). Hence, the arbitrage-free

3To avoid confusion with the applications presented in Section V, observe that this pure discount
bond is only notional, i.e., it is only used to adjust -y to get 7; it is not the numeraire that will be used
in the pricing equations to be introduced. To see this, let g(s, #) be the value of a payout, in units of the
numeraire, made in state s at time ¢. The ¢ = o value of a claim to this payout is

Iy = E*g = / / £(s,NQ" (dw)
A A
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contingent claims price system associated with Q* has an immediate complement,
(s, t; So, to), which is the price at time ¢ in state sp of a claim that pays one dollar
for sure if the realization of the state vector lies in the volume df2 about point s at
time ¢.

The presence of two densities, p and ~y,, now allows the introduction of the
“shadow price function” Z(s, t; so, tp), which relates p and 7. The importance of Z
was first recognized in the seminal paper by Garman (1977). More precisely, Z is
a function that maps conditional g probabilities associated with the state variables
under the reference measure into the arbitrage-free contingent claims prices m
derived from the equivalent martingale measure,

) Gty = TEbsl) g

p (s, 1, 50, 70)
In the phase space, Z plays a role similar to that of the Radon-Nikodym derivative
A in the trajectory space of the equivalent martingale theory. More precisely, from

the construction of Z,
Joar@oy [paw
A A

E (¢h|A d92,0)).

©) Z (s, t; 50, f0)

Hence, while related to k,, Z does differ from #, insofar as, in general, Z does not
exhibit the martingale property.

IV. Main Results*

One significant implication of assuming the state variables to be Markov
under the equivalent martingale measure is that the shadow price function will be
path independent. This assumption permits derivation of differential equations
associated with Z. These equations hold for both the case where the state variables
are prices and for the nonprice state variable case where the relevant notional
securities are permitted to pay dividends, d;(s, t), such that the dividend stream
ensures that an asset’s price is maintained at the level s;;i = [1,2,...,n]. Given
this, the following result applies.

Proposition. Arbitrage-Free Shadow Pricing Conditions

Assuming there exists an equivalent martingale measure, then arbitrage-free valu-
ation requires the following n + 1 differential equations be satisfied for any priced
security,

) g;Z (s, 8 50, o) pr(s, ) + Z (s, t; 50, tp) di(s, 1)

= /g(s.t)/Q*(dW) = /g(s,r)éﬂs,t;m,to)dﬂ.
A A .

This presentation assumes either that the appropriate discounting function ¢ has been imbedded in 7
or that r = 0 and ¢ does not matter.
“Proofs are given in the Appendix.
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+ Z a5, )5 z (5, 13 S0, 10) P(5, 1)

+= Zza,,(s Noae Z(srso,to)m(s n = 0,

subject to the condition Z(so, fo; 5o, fo) = I and the state variables follow diffusion
stochastic differential equations,

dsit) = ai(s,nDdt+_ By(s,0)db,

J=1

where «;(s, 1) is the expected change in s; per unit of time,
(s, 1} is the covariance per unit of time between changes in s; and s;, i.e.,

n
Z B Byj,
k=1

and ¢; are independent Weiner processes taking values in R! under the
reference measure P.

This proposition is applicable to any priced security, including derivative securities
whose values are derived from underlying state variables. In order to use this
proposition to solve for a closed form Z, appropriate restrictions on the coefficients
of the diffusion process are required.

To derive the restrictions on the risk premia associated with the individual
asset prices, it is expedient to take the state variables to be asset prices. However,
with some additional analysis, Z for the nonprice state variable case can be derived
by requiring the dividend streams of the n notional asset prices to be set in such a
way that the numeraire-adjusted asset prices are maintained equal to the level of
the state variables s; where k = 1,...,n. For the case where state variables are
asset prices, Corollary 1 applies.

Corollary 1. Given (7), for the n asset prices to be arbitrage free it is required that
®) [ai(s, 1) + di(s, 1) — rsi1 Z (5,15 50, 10)

+Za,,(s t) (s t;s0,10) = O.

Because the s; are taken to be security prices, the expected return on the asset is the
sum of the capital gain, «;, and the dividend, d;, and the risk premium associated
with the state variable s; is defined as

9) (s, ) = ai(s, D) +di(s, ) —rs;

In (8), the risk premium appears as the term associated with the shadow price
function, Z. Rearranging (8) so that only J; is on the left side reveals the implied
relationship between the risk premium for state i, A;, and Z. In effect, A; represents
the appropriately weighted sensitivity of Z to changes in the state variables.
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Combining (8) with a similar condition applied to the numeraire it is possible
to use the As to identify other important differential properties of Z.

Corollary?2. Given (7), Z(s, t; s, ty) obeys the n+1 first order differential equations,

9]
(10) el nsot) = BisDZ(sEs0t0), i=1,....m,
Si
oz
(n i (s,t:50,10) = [f(5,0Z(s,150,1),
where 3; is the ith component of the vector (s, f) = =V ' \; V is the n x n positive

definite covariance matrix of the state variables with i, j element o;i(s, £); A is the
column vector of risk premiums defined by (9); and

(12) f) = —{rsn+ Z wifi+ Z EJ: Bioib

! 9B
+ 5 Z ;O’ija—sj

Corollary 2 can be used to derive a number of important results, e.g., to specify the
appropriate restrictions on the state variable risk premia {;}, which are required
for Z to obey (7). Under appropriate conditions, these restrictions translate into
conditions on the coefficients of the assumed diffusion processes.

Taking cross derivatives of (10) and (11) in Corollary 2 provides more direct
restrictions on the diffusion coefficients, somewhat loosely referred to here as
“integrability” relationships because (13) is derived from (7), which is the result
of integrating the forward equation,

e = Dy wa 0L
(13) a—sjf(s,t) = atﬁ,(s,t) and o5 = os

forj = 1,...,n
These conditions (13) are decidedly similar to those provided in He and Leland
(1993). In particular, in the case of one state variable, which is taken to be the
value of the market portfolio, these conditions reduce to those provided in He and
Leland’s Theorem 1.5 It is also possible to use these integrability conditions to
interpret Z as an implicit preference function. In effect, (10) and (11) can be used
to derive a condition analogous to Roy’s Identity (see footnote 6) in conventional
utility theory. In this vein, the integrability conditions can be compared to the
Slutsky conditions. These conditions are exploited in Section V to derive an
explicit closed form for Z.6

5Conditions (13) are more complete than those provided in Bick (1990) and He and Leland (1993)
in which only one condition 0f /8s| = 83, /Ot is required because the only state variable is the market
portfolio. If there are two state variables, e.g., CIR, then there are three integrability conditions to be
satisfied: f/0s\ = 08, /0r; 8f /Osy = 8B, /0¢; and 8B, /s, = 83, /Ds>. In general, if there are n
state variables, then (n? + 1)/2 integrability conditions have to be satisfied.

6Upon closer inspection, (10) and (11) provide a direct connection to conventional notions from
utility theory. In particular, dividing (10) by (11) gives an expression that is similar in interpretation
to Roy’s Identity, which is based on the ratio of partial derivatives of the indirect utility function.
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Using the formulations in (10) and (11), it is possible to solve the system of
differential equations for Z to derive a useful decomposition property.

Corollary 3. Decomposition of Z
Given (7), it is sufficient that Z can be expressed as the product of

t
(14) Z(s,t;50.00) = U (s;50,t0)exp / f(st)d p,
fo

where U(s; 5o, to) is independent of ¢ and satisfies the n equations,

Bi (s,t0) U (53 50, t0)

(15) ng (s, 50, t0)

Si

with U (sg; S0, to) 1.

(14) provides the general result that, given 5o, fo, Z is decomposable into a time-
independent function (U) and a time-dependent function. This decomposition is a
direct consequence of the assumption of path independence of Z. Given this, (15)
can be used to solve for the specific functional form of U. While, in general, further
restrictions are required to arrive at a readily interpretable closed form solution to
U, in many practical applications, U can be solved directly and used to specify
an appropriate closed form for Z. In addition to providing solutions in specific
cases, interesting general results are obtainable by, for example, restricting Z to be
separable in the forward and backward variables.

V. Applications

In this section, the theory developed in Section IV is adapted to the practical
problem of evaluating the admissibility of a specific partial equilibrium diffusion
process. In this vein, recent work has identified problems with both the Brownian
bridge and the QU process in certain types of valuation problems. In particular,
Cheng (1991) has demonstrated that, when used as the stochastic process for bond
prices, the Brownian bridge fails the conditions for the Cameron-Martin-Girsanov
theorem. Using arepresentative investor model, Bick (1990) has demonstrated that
the OU process is inadmissible for a nondividend-paying market portfolio. Using
conventional techniques, arriving at these types of results required considerable
analytical effort. However, within the context of a simplified valuation model,
substantially less effort is required to achieve the same results by interpreting the
closed form for Z. The simplifications require that r = 0, which eliminates the
need to consider ¢ in (5). Where possible, it will also be assumed that the asset
pays no dividend or coupon. In addition, it is assumed that there is a one-good
world. For most practical purposes, dropping these assumptions will introduce
a number of complications that will not add substantively to understanding of
specific valuation problems.

For the simplified valuation model, consider the Brownian bridge process
for the relevant state variable X(¢), which can be specified, e.g., Cheng (1991),
dX = (—X/(T - D)dr + dW, where t € [0,T), where dW is the standard Weiner
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process. The risk premium for this asset follows directly from the specification
given in (9) withd = r = 0, ie.,, A = —[X/(T — 1), the drift term. Taking
the variance-covariance matrix for the state variables to be the identity matrix
gives B = [X/(T — 0], f = (1/DX*/T - 1?) — 1/AT — 1)). Given this,
the integrability conditions (13) associated with Corollary 2 follow appropriately,
0B/0t = 9f /60X = (X /(T —1)?). Since the integrability conditions are satisfied, the
closed form for Z can be derived as Z(X, 1) = {2m/(T — 1)} exp{X?/Q2[T — 1])}.
In this case, as ¢+ — T the Z exhibits explosive behavior. For this reason, the
Brownian bridge is not capable of avoiding arbitrage opportunities. Because the
process fails only as the endpoint T is approached, the Brownian bridge will be
admissible only for processes where the portions of the sample paths close to T are
not considered. This method of evaluating the behavior of the Brownian bridge is
substantially less complicated than the tedious approach used by Cheng (1991).

The Brownian bridge represents a stochastic process that violates the require-
ments for arbitrage-free valuation as the fixed endpoint is approached. However,
with appropriate specification of the trajectory space, a shadow price function can
be derived. In contrast, as demonstrated in Bick (1990), the OU process for a
nondividend-paying security is a case where Z cannot be derived. Specifying the
OU process as dX = 60X dt + dW. For the simplified valuation model, this leads
to A =0X,3=—0Xandf = (1/2)8 + (1/2)8°X?. It follows immediately that
the integrability conditions are not satisfied, i.e., 93/0t # 9f/0X, and it is not
possible to derive a Z. In effect, if the integrability conditions are not satisfied,
then the specified process cannot support an arbitrage-free equilibrium. In order
for the OU process to be admissible, it is required that the security pay a dividend
of amount 6X resulting in A = 20X = —3 and f = 6. The closed form for Z in this
case is Z(X,r) = exp{0r} exp{—6X2}. Where the OU process refers to wealth,
from OZ /90X < 0 for X > O this corresponds to risk-averse preferences.

While useful as a heuristic framework for practitioners seeking to evaluate
the appropriateness of an assumed stochastic process (e.g., Brennan and Schwartz
(1980), Rabinovitch (1989), Ritchken and Boenawan (1990)), the simple valuation
approach suffers from a number of technical defects. For example, the assumption
that there is only one asset in the general equilibrium obviates the possibility of
pricing by arbitrage any other security. In addition, the assumption that r = 0
eliminates the possibility of evaluating diffusion processes for interest rates, a
potential state variable that is of considerable practical importance. Evaluation of
diffusion processes for interest rates requires adapting the results of Section IV to
nonprice state variables. In this case, the definition of the risk premia given in (9)
has to be amended to allow a given s; to be a notional security whose price tracks
the relevant nonprice state variable. The need to assume an appropriately specified
risk premium for interest rates is recognized in various studies that have attempted
to model the arbitrage-free equilibrium conditions for interest rate processes, e.g.,
Vasicek (1977).

To provide a more developed frame of reference, the square root interest
rate model of CIR (1985b) is considered. The closed form for Z is first solved
in a partial equilibrium setting and, subsequently, is contrasted to Z derived by
exploiting CIR’s general equilibrium solution procedure. It was demonstrated in
Section IV that, to do this correctly, restrictions on the risk premia compatible with
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arbitrage-free equilibrium are required. General equilibrium approaches such as
CIR (1985a, b), Bick (1990), and He and Leland (1993) develop relevant valuation
results by explicitly modeling aggregate wealth dynamics. In this case, the risk
premium for a given state variable is determined simultaneously with the risk
premia for all other endogenous variables, including aggregate wealth. Hence,
a general equilibrium solution is required to get the risk premium for a given
state variable. The approach proposed in Section IV permits the evaluation of
“partial equilibrium” prices and risk premia that are compatible with arbitrage-
free valuation without solving for the general equilibrium.

For the partial equilibrium example under consideration, it is assumed that
there is one state variable, the instantaneous interest rate r, which follows a mean-
reverting square root process,

(16) dr = KO —r)dt+oy/rdy,

where dn is the standard Weiner process, and «, ©, and ¢ are constants. Given
this, the objective of the exercise is to derive a closed form expression for Z based
on the results of Section I'V. Taking the price of the notional security for interest
rates to be q,, with appropriate scaling, the derivative dq,/0r = 1. This permits
Corollary 2 to be applied as follows,

0z A
amn il _EZ and
oz
(18) 5 = 2
A 1A 1, 0P
(19) where [ = _{r—ﬁ(e_r)E’LEEJ’E‘”E}'
(20) B = —x(o%).

Observing that the final solution will depend intimately on ), in order to compare
the resulting solution directly to CIR, choose a general form for the A given in
Section IV,

@1 A o= Mr+dg

where A; and )¢ are constants with d(s, r) and a(s, f) captured in Ag.

Given this, a more precise expression for A can be obtained by manipulating
the second derivative conditions associated with Corollary 2,

of

22 = = (08/ory = 0.
(22) ar 88/
Substituting (21) into (19) and (20) and using (22) gives the relevant restrictions
on A’

(23) MN+2kA+207 = 0 and A = O.
1

"The cross derivative or integrability conditions on A associated with Corollary 2 imply that Ag
will be equal to 0, i.e., Ap must be zero to avoid arbitrage opportunities. In turn, analysis of the
solution for Ag reveals that there are actually two solutions to the discount bond pricing equations.
This nonuniqueness problem was not considered in CIR.
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Equation (23) can now be used to specify both 3 and Z. In this case, 3 = —\;/c?
so that using Corollary 3,

A e I
24) Z(r,tro,tg) = e_‘l(’—fo)e—:%(l 10)’
—KkOA
where g = 21 and A\, = -k Vk2—202
o

The implications of using this approach can be illustrated by considering the gen-
eral equilibrium form for Z derived using the CIR approach.

To model the general equilibrium, CIR require that there are two state vari-
ables, W (per capita wealth) and r. These variables follow the joint processes,

(25) dw

(a(r) — W dt + (M) Jop))W dr,

k(O — r)dt + o+/r dn,

(26) dr

where ;1 = Cov{dn,dIl") and u, o, A}, ¢, K, O are constants. Deriving Z requires
choosing the appropriate risk premia that satisfy the three conditions associated
with (13) when there are two state variables,

27 Ao = ((NjrW) Jo?p?) and X, = A
Then, using Corollaries 2 and 3, it follows that Z is now
(28) Z = exp{—c(t — 1)} (Wo/W,).

In effect, in the general equilibrium CIR model, Z has the more conventional utility
theoretic interpretation as the ratio of the marginal utilities of wealth at ¢ = 0 and
t =T for an investor with log utility.

Comparing the partial and general equilibrium approaches, the derivation
of Z appropriate for the valuation of the price of claims contingent on r are the
same except that, in partial equilibrium, an explicit restriction is imposed on A;
arising from the cross-derivative restrictions on A given by Corollary 2. Given
the risk premia have been correctly specified, the partial equilibrium solution is
compatible with the arbitrage-free general equilibrium. Hence, satisfaction of the
integrability conditions ensures that the risk premium of interest can, for practical
purposes, be modeled in a partial equilibrium setting. For the practitioner, evalu-
ation of the integrability conditions can provide an effective method for checking
whether the coefficients on assumed partial equilibrium diffusion processes are
capable of avoiding arbitrage opportunities without building a general equilibrium
model. Analytically, previous approaches to specifying the coefficient restrictions
have involved specifying second order partial differential equations arising from a
general equilibrium model. Exploiting the properties of Z, the second order PDE
can be replaced with two first order differential equations. In certain situations,
this will provide a significant reduction in the complexity of arriving at a valuation
formula.
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VI. Summary

This paper develops the shadow pricing function (Z) associated with the
equivalent martingale theory of arbitrage-free security price processes. Under
the assumptions of diffusion state variable processes and dynamically complete
markets, the existence of an equivalent martingale measure (risk-neutral prob-
ability density) permits derivation of the Z that maps conditional probabilities
associated with the state variables into arbitrage-free contingent claims prices. It
was demonstrated that differential equations associated with Z can be used to de-
rive restrictions on the coefficients of assumed diffusion processes such that the
absence-of-arbitrage is ensured. A heuristic, “simple valuation” framework was
proposed to facilitate practitioners concerned with evaluating the appropriateness
of assuming a given diffusion process for the relevant state variables. Both the
Brownian bridge and OU processes were used as illustrations of the simplifications
provided by shadow price function restrictions in evaluating the admissibility of
a specific diffusion assumption. Finally, a specific closed form for Z was derived
for the case where the nonprice state variable of interest followed a square root
process. This Z is contrasted with the Z derived from the general equilibrium
model of Cox, Ingersoll, and Ross (1985a, b).

Appendix

Proof of Proposition 1. A number of possible approaches can be used to derive
(7). One method exploits the change of measure property, i.e., by the martingale
property,
r
(A-1) EQ{d / di(s)ds + p(D)|s, t = 0.
0
Under the P measure this becomes
t
(A-2) E*{d / Z(8)di (s)ds + Z(Dpi(D)s,1
0

0.

Using Ito’s lemma, it follows that Z(s, t) satisfies Equation (7) of the proposition.
Another, more tedious but potentially more revealing derivation involves integrat-
ing the relevant forward equation. Using this approach involves observing that the
following pricing relationship holds forall ¢, 70 < t < T,

t
(A-3) Pk (so,tp) = //ﬂ' (S, t/;S(),to) dy (S, t/) d dt
At

+ / (S, ; 50, o) Pi(s, )d 2,
A

where 0 < 1y < t < T;pu(s,?) is the price of asset k in state s at time ¢ during the
time interval O to T'; di(s, ¢) is the dividend paid per unit of time in state s at time
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t; and [, df2 represents the integral over the volume of phase space. Substitute
7 = pZ in (A-3), differentiate Equation (A-3) with respect to ¢, and use the forward
equation for the diffusion state variables to obtain,

A-4) 0 = /P(S,ﬁso,to) [Z(S,t;so,fo)dk(&t)

+ %Z (s, £; 50, t0) pic(s, t)] daf?

k
0
- / Z (s, 1,50, 10) pi(s, 1) E £ o (s, 0)p (s, t; S, to)
=1 !

1 k

—= Y —a;ip(s,t;s0. L) p dR2.
2 J=1 65,'

Integrate the last two terms in Equation (A-4) by parts. By assumption, the prob-
ability density on the boundary of integration vanishes so that

(A-5)0 = / p (S, 1; 50, tp) [Z(s,t:s(),to)dk(s,t)
+ 2Z( t; 50, t0) pr(s, 1)
o1 §, 6550, 10) Pr\S,

+)ails, t)ga—Z (5,250, t0) pi(s, ) | df2

Si

1 3 d
-5 / Z Z,: 35, {5, )p (s, 1, 50, 10)} 6—&2 (5,1 50, to) pi(s, )dS2.

Integrate the last term in Equation (A-5) by parts. Because o;;p vanishes on the
boundary, Equation (A-6) is obtained,

0
(A-6) / p(s,1; 50, ) [EZ (s, 50, t0) pi(s, )

+Z (S’ t; S0, tO) dk(s7 t)

0
+ Z (8. 05-Z (5,150, 10) (s, 1)
82

1
+s Z 2}: o5, r)mz (s, 5550, 1) pe(s, 1) | d2 = 0,

for v < < T,

with the initial condition Z(sy, fo; 50, fo) = 1. (Observe that to derive (A-6) requires
that (Op/01) = 0 in (A-3).) Equation (7) follows immediately from (A-6) since
(7) insures that Equation (A-6) holds. A special case of interest occurs in (A-6)
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where only p depends on so and fo . If 5o and ¢ are varied freely, the value of the
integral will vary unless the expression in the square brackets is identically zero.
This is the case where Z is separable in the forward and backward variables. O

Proof of Corollary 1. This result requires combining (7), evaluated with p; = sy,
which is the expression given in the proposition, with (7) evaluated for the special
case of the numeraire where pg(s, £) = 1, which pays dy = r continuously. For the
numeraire, this produces

) )
(A-7) 52476, HZ + Z a;(s, ’)Es_,z

! &
+§Z;U,7(S,Z)Mz = 0.

Multiply (A-7) by s;, equating this with (7) and solving provides the result in the
corollary.

Proof of Corollary 2. In vector notation, (8) can be written
(A-8) — M V grad Z where grad Z is the appropriate gradient

bz,

or GradZ

where 3 = —V '\, Equation (10) is (A-8) in component form. Substituting (10)
into (A-7) gives

0z 1 0
(A9) o +1Z+ Z (s, DBZ + 5 }: ; oi(s, 0552 = 0.
Using (10) once again, the last term in (A-9) can be written as

(A-10) % DY o, r)zg—f{-' + % DD ouls, NBBZ.
i ' i

(A-9) and (A-10) yield (11) in the text. Taking cross partial derivatives of (10) and
(11) and manipulating gives

19} g .

(A-11) Es;f(s’t) = Eﬂj(s,t), j=1,...,k, and
9G; 95 . .

(A-12) -a—sj(s, ) = B, (s,t), alliandj,

Proof of Corollary 3.

Equation (14) is obtained by integration from Equation (11). To obtain Equa-
tion (15), substitute (14) into (10) and use Condition (A-11).0
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