

Profit Profile for a Stereo

<i>DATE</i>	<i>Nearby Position</i>	<i>Deferred Position</i>
$t=0$		
<i>Commodity 1</i>	Short Q_{N1} contracts at $F(0,N)$	Long Q_{T1} units at $F(0,T)$
<i>Commodity 2</i>	Long Q_{N2} units at $G(0,N)$	Short Q_{T2} units at $G(0,T)$
$t=1$		
<i>Commodity 1</i>	Close out position with Long Q_{N1} units at $F(1,N)$	Close out position with Short Q_{T1} at $F(1,T)$
<i>Commodity 2</i>	Close out position with Short Q_{N2} units at $G(1,N)$	Close out position with Long Q_{T2} at $G(1,T)$
In this case, the profit function can be specified:		
$\pi(1,T) = \{Q_{N1} (F(0,N) - F(1,N)) + Q_{T1} (F(1,T) - F(0,T))\} +$ $\{Q_{N2} (G(0,N) - G(1,N)) + Q_{T2} (G(0,T) - G(1,T))\}$		

Example: Metal Stereo \rightarrow Gold (G) for commodity 1 against Silver (S) for commodity 2

Need to set tails in both commodities AND to also set hedge ratio for commodity 1 versus commodity 2

Step 1: Set the tail hedge ratios for each of the spreads using $Q_{N1} = Q_1 (1 + \Delta ic_G(0))$ and $Q_{N2} = Q_2 (1 + \Delta ic_S(0))$, where Q_1 and Q_2 are the number of spreads in commodities 1 and 2:

$$\pi = Q_1 (G(1,N) \Delta ic_G) - Q_2 (S(1,N) \Delta ic_S)$$

Dividing through by $Q_1 G(1,N)$ gives:

$$\pi(1) = \Delta ic_G - \frac{Q_2 S(1,N)}{Q_1 G(1,N)} \Delta ic_S \rightarrow \frac{Q_2 S(1,N)}{Q_1 G(1,N)} = 1$$

Step 2: To solve the hedge ratio for the number of silver contracts per gold contracts, observe that the denominator and numerators are the US\$ value of each contract. Assume that $F(0,N)$ and $G(0,N)$ can be used as proxies for the unknown $F(1,N)$ and $G(1,N)$.

Using current (11-6-17) June 17 COMEX/CME metal contracts observe that the US\$ value of one gold contract = 100 oz. (1266.1) = US\$126,610 and one silver contract = 5000 oz. (16.914) = US\$84,570. It follows that the number of silver contracts per one gold contract is: $(126,610/84,570) = 1.497 \rightarrow 15$ tailed silver contracts to 10 tailed gold contracts.