Profit Profile for a Tandem

DATE t=0	Nearby Position	Deferred Position
Commodity 1 Commodity 2	Short Q_1 contracts at $F(0,N)$ Long Q_2 units at $G(0,N)$	Long Q_1 units at $F(0,T)$ Short Q_2 units at $G(0,T)$
t=1		
Commodity 1	Close out position with Long Q_I units at $F(I,N)$	Close out position with units Short Q_1 at $F(1,T)$
Commodity 2	Close out position with Short Q_2 units at $G(1,N)$	Close out position with units Long Q_2 at $GF(1,T)$

In this case, the profit function can be specified:

$$\Pi(1,T) = Q_1 \left\{ (F(0,N) - F(1,N)) + (F(1,T) - F(0,T)) \right\} + Q_2 \left\{ (G(1,N) - G(0,N)) + (G(0,T) - G(1,T)) \right\}$$

$$= \left[Q_1 \left(F(1,T) - F(1,N) \right) - Q_2 \left(G(1,T) - G(1,N) \right) \right] - \left[Q_1 \left(F(0,T) - F(0,N) \right) - Q_2 \left(G(0,T) - G(0,N) \right) \right]$$

Example: Currency Tandem -> C\$ against £

Let Q_1 be the number of C\$ futures contract for C\$100,000 and Q_2 be one £ contract for £62,500

Need to set hedge ratio for C\$ against £

Assume that the spreads do not need to be tailed (usually OK for currencies) then using the tailed spread profit functions:

$$\pi = Q_1(F(1,N) \Delta ic_F) - Q_2(G(1,N) \Delta ic_G)$$

Dividing through by $Q_1 F(1,N)$ gives:

$$\pi(1) = \Delta i c_F - \frac{Q_2 G(1,N)}{Q_1 F(1,N)} \Delta i c_G \rightarrow \frac{Q_2 G(1,N)}{Q_1 F(1,N)} = 1$$

To solve the hedge ratio \rightarrow determine the number of £ contracts per C\$ contracts. Observe that the denominator and numerators are the US\$ value of each contract. Assume that F(0,N) and G(0,N) can be used as proxies for the unknown F(1,N) and G(1,N).

Using current (11-6-17) June 17 FX rates observe that the US\$ value of one C\$ contract = C\$100,000 (.75055) = US\$75,055 and one £ contract = £62,500 (1.2661) = US\$79,131. It follows that the number of C\$ contracts per one £ contract is: $(79131/75055) = 1.054 \rightarrow 105$ to 100