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ABSTRACT

Various protocols have been developed to improve the success rate
of In Vitro Fertilization (IVF). Earlier protocols were based on em-
bryonic cell quality on embryos’ third day. Newer protocols rely
on the blastocyst quality (day-5 embryo). Artificial intelligence (AI)
systems for automatic human embryo quality assessment seem to be
the natural trend towards improving IVF’s outcome. Al systems can
potentially reveal hidden relationships between embryos’ various at-
tributes. To this date, most Al systems assess single blastocyst im-
ages. This paper proposes a novel approach that predicts the embryo
implantation outcome from their time-lapse images. This approach
consists of two models. One model evaluates each embryo based
on its day-3 attributes, while the second model assesses the same
embryo’s day-5 image sequence. A Data Length Schedular (DLS)
algorithm is developed addressing variations in blastocyst stage se-
quences’ lengths. With an accuracy of 76.9%, the proposed system
beats state of the art by 6%.

Index Terms— IVF, Embryo, Deep learning, Artificial Intelli-
gence, Implantation

1. INTRODUCTION

Reproductive diseases affect many couples around the globe [1, 2].
In-Vitro Fertilization (IVF) has been one of the most commonly used
therapies for all causes of infertility. Even though substantial ad-
vancements have been made in IVF protocols, the success rate re-
mains lower than desired [3]. In IVF, multiple OVAs retrieved from
a patient’s ovaries are fertilized in the lab environment and kept in
controlled incubators for about five days before grading the embryos
and transferring one or two embryos with the highest implantation
potentials into the patient’s uterus. Before substantial advances made
in culture’s quality and incubating technologies, many clinics pre-
ferred to transfer embryos on day three [4]. The rationale behind
such a decision was that naturally, the women’s uterus is the best
incubator for an embryo to grow. Moreover, it seemed that often
embryos would not continue to reach to day five stage [5]. So it
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would have been less risky and more cost-efficient to transfer em-
bryos on day three [4]. However, often, patients seem to have a
higher number of embryos on day three. Therefore, choosing an em-
bryo on day three for transfer seemed to include some randomness.
Because many of such embryos will not develop into blastocysts de-
spite all clinical efforts [6], it has been observed that embryos that
develop into blastocysts seem to have a higher chance of leading
to a positive pregnancy [7]. Therefore, nowadays, most clinics use
embryo quality assessments on blastocysts [8]. The most common
method for embryo quality assessment is the morphological evalua-
tion through visual attributes [9]. To quantify those attributes, mul-
tiple grading protocols have been developed. Evaluation methods
based on day three and blastocyst have been the most popular meth-
ods for quality assessment. Not only do they coincide with the above
transfer timing, but also they evolve to a substantially different stage
of growth with relatively different yet distinctive morphological fea-
tures [10, 7].

Today’s primary strategy for optimizing IVF’s outcome is to se-
lect and transfer embryos with the highest chance of success. The
most common embryo selection technique is grading at the blasto-
cyst stage (day five) [9], via assessing morphological attributes. Such
morphological evaluation is done through visual assessment by ex-
perienced embryologists, making it time-consuming and subjective.
Like many other medical image analysis applications, there has been
arising interest in using Al algorithms to analyze human embryo im-
ages. The following section describes these works.

1.1. Artificial Intelligent based human Embryo analysis

The works explored in this section investigate the practicality of Al-
based models for automated analysis of human embryos in micro-
scopic images. These works can be divided into two categories of (1)
automatic grading and (2) implantation or live-birth outcome predic-
tion.

The first category’s work utilized Al-based systems to assign a
grade to each embryo based on the morphological attributes of vari-
ous components of it [11, 12, 13]. Approaches of the first group tried
to address the central issue around morphological grading: subjec-
tivity to the embryologist’s knowledge and experience. The differ-
ence of opinions among expert embryologists could lead to grad-
ing inconsistencies [14] and lead to choosing embryos with lower
implantation potentials. These methods try to minimize the grad-
ing inconsistencies by comparing their models’ output against mul-
tiple experts’ accumulated decisions. The grading methods based



on morphological attributes of an embryo and the embryologists’
experience help assess the quality of an embryo only to some ex-
tent; however, they are not wholly indicative of the outcome. For
instance, multiple studies have shown that embryos graded as excel-
lent only had a 50% success rate [13, 15, 16]. Indeed, there might be
embryonic feature qualities that, for any reason, have not been ob-
served, correlated, or included in the outcome prediction process yet.
Therefore, it might be better to use an artificial system to directly use
millions of features to predict the outcome.

The second category attempts to correlate between embryos
physical attributes and their outcome after the embryos are trans-
ferred. The recorded outcome can be either in the form of implanta-
tion [17], or livebirth [18, 19, 20]. Such an actual outcome is used
as the ground truth (GT), and Al models are created to predict the
correct outcome through analyzing embryo images. One of the more
recent developments in IVF technologies has been the introduction
of time-lapse imaging systems within incubators, such as embryo
scopes. These incubators have enabled continuous monitoring of
embryos’ development. Unfortunately, most Al-based developed
systems only evaluate embryos quality based on a single shot of its
blastocyst stage [18, 19, 11, 12]. Only a few methods have utilized
time-lapse image sequences [13, 20]. Despite their efforts, these
methods suffer from an oversight, which is the entire sequence’s
frames are assumed to have the same deciding attributes. The same
processing unit is used to extract all embryo’s image features, with-
out any separation for the existing difference at various embryo
stages. The fact that an embryo has different visual attributes at vari-
ous development stages [21] is entirely overlooked. Multiple studies
have shown that there is a direct correlation between the embryo’s
state at specific time-stamps and its viability/potentials [22, 23].
It is shown that day five transfers’ success rate is correlated with
the number of developed cells on day three [23]. [22] showed that
timings of different stages are related to the embryo’s final quality.

In this paper, we propose a system that exploits image sequence
format and combines the morphological features of an embryo at two
significantly different stages of its development to assess its quality.

1.2. Contributions

This paper presented an algorithm that utilizes an embryo’s time-
lapse image sequence to predict its implantation outcome. The pre-
sented algorithm consists of two CNN models. One model processes
the day five embryo images, and the other evaluates the day three
embryo frames. The two systems’ results are combined to make a
single decision regarding the embryo’s quality (pregnancy outcome).
When an algorithm focuses only on an embryo at one specific devel-
opment stage, only the visual attributes existing at that stage will
be processed, and perhaps the duration of the process will be dis-
missed. In [18, 19, 11, 12], embryos are evaluated only based on a
single frame at their blastocyst stage. Other vital information, such
as the length of time to reach the blastocyst stage, will be dismissed
entirely. By processing an embryo during a window of time, we
can embed the evolution speed into our model in addition to vi-
sual attributes. We proposed a Data Length Schedular (DLS) al-
gorithm to regulate the training process by suppressing effects of a
variable-length image sequence that naturally exists due to slow or
fast-developing embryos.

Fig. 1. Images of an embryo at the start of its (a) 3rd and (b) S5th
days.

2. METHODOLOGY

2.1. Data

We used a dataset comprised of 130 time-lapse image sequences of
individual embryos. Frames were captured at 15-minute time in-
tervals by EmbryoScopeTM time-lapse incubator (Vitrolife). The
image format is 8-bit 500x 500 images. Each embryo day three se-
quence was comprised of the frames capture after the 48th hour but
before the 72nd hour after fertilization. The day three sequences
consisted of 96 consecutive images. The day five sequence were the
frames captured after the 96th hour. The day five sequences ended
when the embyros were transferred to the patients’ uterus. Since dif-
ferent embryos’ progress rate varies, the length of day five sequences
was different (ranging between 67 and 96 frames). Two images of
an embryo at its two different stages of day three and day five from
one image sequence are shown in Fig. 1. The visual attributes of
an embryo at these two times are significantly different. We auto-
matically cropped and centered each image around each embryo and
resized the image to 224 x224 pixels. Out of our 130 sequences, 60
resulted in positive implantation, whereas the other 70 did not. The
total number of images for day three and day five sequences were
12480 and 10097, respectively. We used 5-fold cross-validation for
the training and testing of our model. We divided our dataset into
five subsections of 26 samples. Four sets were chosen as the training
set in each run, while the last set was used for testing. The algorithm
was repeated five times with changing the test set in each round. The
outcomes of all runs were averaged then.

2.2. Model architecture

Fig. 2 presents the CNN architecture proposed for this work. This
architecture consists of two separate processing paths. The top path
is designed to process day three embryo image sequences. The lower
path is designated to evaluate day five image sequences. The output
of each path is the implantation probability of the input embryo in
the image sequence. Each convolutional layer of this structure is
followed by a batch normalization layer [24] (momentum set to 0.01)
and a ReLU activation function [25]. The dashed lines in Fig. 2
represent skip connections that use a convolutional layer witha 1 x 1
kernel size used for channel size matching.

2.3. Model Training

Each path in this model is trained separately. Relevant Images of
each sequence are extracted and separated into two groups (day
three, day five). This process is done based on the embryo’s time



;, 64

5
3x3 Conv

g
=7
2, ng
fe
A
3x3 Conv, 64
Fy

3x3 Conv, 64
A

3x3 Conv, 64

3x3 Conv, 32

3%3 Cony, 32

I::Pos.'Neg:} +

Avg
Pool

3x3 Conv, 128
3x3 Conv. 128
3x3 Conv, 128
3x3 Conv, 128,
Stride 2
3x3 Conv, 64

3x3 Conv. 64

i g— o
: : ]
floew i o 3 ] =
Hlem | & - 2 Pl (=2 =
A e R A = 7]
vl Bl |Ew iy 8 |Ew /|8 |B||MX |5
< O 8 Fe T O «18 e G l«1§ —Pooling<« .
U0 O o=E 2 | B
"Q on A ";:1 e A ';2 'Q = =}
r
) & A | |8 Rt o l:)_
it
1 1 1 1 1 -
': (]
£ : H 2
~t - il e | H e o )
S| & |iifea| & |i]|=] |= 5
3 e | z L | M w
= e il = = : [ I ax .

=] = ul = 2w ill= = -
88T B ¢{E = 8 [«{ 8 HPooling«{
Ol & V| e | |0 N =
s o W2 o | em @2 o o = ]
L] bl b [ w E &)
o o~ | |en o o ~
B3
=

Fig. 2. Proposed CNN architecture for processing both day three (top) and day five (bottom) embryo image sequences.

displayed on the right bottom side of each frame (see Fig. 1). The
displayed time area is cropped automatically and converted to text
using Optical Character Recognition (OCR). When a sequence is
called during training, one random image is selected from that se-
quence group and passed to the Data-batcher with that sequence
label. If the embryo image sequence has a positive implantation
outcome, the given label is positive (negative implantation outcome
produces a negative label). In the consecutive times when the same
sequence is called again, a new random frame is selected without
having repeated selections. The no repeated selection scheme en-
sures that all frames are processed only once during the passage of
one epoch. We have reached the choice of random selection by trial
and error. Since the consecutive frames are too similar, if we train the
model without a random selection of the frames, it will be quickly
pushed toward an unwanted direction. Therefore it might steer away
by overfitting or non-convergence. Training of each path is separate.
When the day three path is being trained, the training data solely
consists of images in the day three group. Consequently, during the
day five model training, only the day five group images are used for
training. The number of images for all of day three groups is the
same and equals 96. However, the number of frames on day five
section varies. Such image sequence length variation could cause
performance degradation in the generality of the trained data. In a
non-regulated training process, those sequences with a higher num-
ber of image frames could trigger data imbalance. Longer sequences
usually have a lower progression rate, and therefore, the difference
between consecutive frames could be small. Such a low variation
from one frame to the next could be viewed as repetitive frames,
triggering a bias imbalance in the training sequences. In order to
suppress this potential issue, we propose Data Length Schedular
(DLS) algorithm.

2.3.1. Data Length Schedular

DLS algorithm controls data from sequences in the training based
on the training’s progression; it spreads samples more evenly . The
first DLS parameter is s. The training sequences are divided into s
groups of 1/s percentile, 2/s percentile, ..., and s/s percentile in
length. At the start of training, the first group is used. The next group
replaces the current group if certain checkpoints are reached; the pro-
cess continues until the last group is selected. There are two inter-

changeable modes for checkpoints: completion of every n epochs,
the passage of p consecutive epochs without improvement in the val-
idation loss. Here, we used the first mode with s = 5 and n = 10.

2.4. Model Testing

In order for the generated model to predict the implantation outcome
for test embryo sequences, it has to go through the following steps:

1. The day three and day five images of the test sequence are
extracted and separated into two groups. These images are
extracted if their time puts them between 48-72th hour (day
three) or after the 96th hour (day five). After applying OCR
to each image’s right bottom side, the displayed time would
be converted to text, and the image time is retrieved.

2. Images in the day three group are passed to the day three
model. For each image, a single number is produced. All of
the numbers are averaged to create a single number represent-
ing the day three prediction (this number is used to evaluate
the day three model performance).

3. The same operation is repeated; however, the day five image
group is passed to the day five model.

4. The two outputs are then averaged with the manner shown in
Fig. 2, outputting a single number.

5. The outputs are compared against the annotations of the orig-
ination embryo to calculate the model performance.

3. EXPERIMENTAL RESULTS

The presented model was trained and tested on Cedar cluster of
Compute Canada [28]. The batch size for the training of both models
was set to 256. The number of epochs for both operations was set
to 100. The learning rate of both models was set to 1e—4. The loss
function used for training of both models was Binary cross-entropy
loss. Adam optimizer [29] was used as the optimization algorithm.

The performance for both models were also calculated before
their combinations. These calculations were done using the outputs
in the second and third steps of the testing operation explained in
Section 2.4. These results are shown in Table 1.



Table 1. Performance comparison of embyros’ implantation outcome predictors.

Row No ‘ Model ‘ Percision [26]  Recall [26]  Jaccard-Index [27]  Accuracy [27]

1 \ Day three model \ 63.9 67.4 50.6 68.5

2 \ Day five model \ 70.6 69.0 52.6 69.2

3 ‘ Day five model + DLS ‘ 72.6 70.4 54.2 70.8

4 ‘ Combined Day three and Day five ‘ 72.6 72.3 56.7 72.3

5 |  Combined Day three and Day five + DLS | 79.6 76.4 61.8 76.9

6 ‘ Image CNN classifer [17] ‘ 63.6 63.6 46.7 62.8

7 ‘ Image + Cell segmentation CNN classifer [17] ‘ 71.1 72.7 56 70.9

8 \ Handmade feature classifer [18] \ 61.5 60.5 44.0 62.0

9 ‘ Image + Morphological factors CNN [19] ‘ 70.2 71.4 55.3 74.3
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