ADOPTING SELF-SUPERVISED LEARNING INTO UNSUPERVISED VIDEO
SUMMARIZATION THROUGH RESTORATIVE SCORE.

Mehryar Abbasi, Student Member, IEEE, Parvaneh Saeedi, Member, IEEE

School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada

ABSTRACT

In this paper, we present a new process for creating video summaries
in an unsupervised manner. Our approach involves training a trans-
former encoder model to reconstruct missing frames in a video in a
self-supervised way using the partially masked video as input. We
then introduce an algorithm that utilizes the above-trained encoder to
generate an importance score for each frame. Such frame importance
scores are used to create the summary of the video. We show that
the reconstruction loss of the model for a video with masked frames
correlates with the representativeness of the remaining frames in the
video. We validate the effectiveness of our approach on two bench-
mark datasets of TVSum and SumMe. We demonstrate that it out-
performs state-of-the-art (SOTA) methods. Additionally, our ap-
proach is more stable during the training process compared to SOTA
techniques based on generative adversarial learning. Our source
code is publicly available!'.

Index Terms— Unsupervised Video Summarization, Unsuper-
vised Learning, Self-supervised Learning, Self-attention Encoders.

1. INTRODUCTION

Video summarization is the task of creating a shortened version of
a video that captures the most essential and informative content of
the original video [1]. This can be done by extracting keyframes
(also known as video skimming) or creating a series of video snip-
pets (also known as video storyboarding) [1]. A general guideline
for video summarization is that the summary should not be longer
than 15% of the original video’s length. This ensures that the sum-
mary can capture the most critical aspects of the video while still
being concise and easy to watch. In recent years, there has been a
shift towards using deep learning methods for automated video sum-
marization [2]. Many of these approaches, however, rely on human-
generated ground-truth labels to train their models [3-5], which can
be time-consuming and subjective. In addition, such subjectivity im-
plies that a video could have multiple possible summaries. As a re-
sult, there has been a focus on developing unsupervised video sum-
marization methods without ground-truth labels for training [6-16].

A representative video summary enables a viewer to infer the
original content of the video with less effort, time, and resources.
Most unsupervised video summarization algorithms are built on such
a principle [6, 9-16]. These methods use Generative Adversarial
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Networks (GAN) to create a representative summary that encapsu-
lates the original content of the video. They, generally, train multiple
deep models alongside the summarizer to imitate a viewer and de-
cide whether the summary accurately represents the original video.
The operational approach of these methods usually includes a sum-
marizer, a generator, and a discriminator. The summarizer produces
frame importance scores and creates a video snippet that includes
only high-scoring frames. Using the video summary and the original
input video, the generator creates two new videos, one from the orig-
inal input video and one from the summary. The discriminator in-
spects the generator’s outputs to identify which one of them was cre-
ated from the summary. The training is performed in an adversarial
manner. The summarizer is trained to create summaries that mislead
the discriminator. The generator is trained to generate outputs that
are similar to each other. Meanwhile, the discriminator is trained to
make the distinction. The training process is not only highly com-
plex but could be unstable.

[6] was the first published work to train a Long Short-Term
Memory (LSTM)-based keyframe selector through an adversarial
learning process. [14] improved the LSTM-based GAN model by
improving the loss functions and optimization steps. [16] attempted
to maximize the preservation of information in a video’s summary
by creating a more restrictive discriminator. [9] tackled the training
difficulties for longer videos by adding a video decomposition stage.
It broke each video into smaller, non-overlapping packs of consec-
utive frames and uniformly sampled strides before passing them to
the summarizer network. The video frame scores were generated via
the recomposition of the outputs for all packs and strides. Both [13,
15] tried to improve the algorithm presented in [6] by adding a frame
score refinement stage on the summarizer’s output. [15] employed an
attention module that gradually edited each frame’s score based on
current and previous frames. [13] embedded an Actor-Critic model
that adjusted the frames’ scores in a non-sequential order based on
past and future frames and previously made adjustments.

Training instability is an inherent problem among the GAN-
based unsupervised summarizing networks [7]. Therefore, some
approaches incorporated reinforcement learning with custom hand-
crafted reward functions [7, 17-19]. Such reward functions mea-
sure specific properties that must exist in an optimal video sum-
mary. [7] proposed a two-part reward function, named Diversity-
Representativeness, that included measures of diversity and repre-
sentativeness. The diversity measure quantified dissimilarities be-
tween frames of the summarized video. While the representative-
ness measure evaluated the visual representation (or the similarity)
of the selected frames to the entire video. The goal was to train
a model that creates summaries consisting of diverse representative
frames of various parts of the video. [17] pointed out that most of
the existing video summarization methods ignore inherent Spatio-
temporal patterns in video data. They proposed a temporal segment
network to create temporal and spatial scores for all video frames.



The average values of the temporal and spatial scores for the se-
lected summary frames were used as reward values to train the sum-
marizer network. [18] combined the diversity-representativeness re-
ward presented in [7] with a jointly trained video reconstructor. They
were able to effectively use both Award-based and Adversarial-based
training processes. The reconstructor model was trained alongside
the summarizer that included a diversity-representativeness reward
in an adversarial manner.

Many of the previously mentioned video summarization meth-
ods use LSTM-based models. Unfortunately, they could suffer from
issues including vanishing and exploding gradients [20]. In contrast,
transformer models, which use self-attention mechanisms, have
been successful in language processing tasks [21]. Some previous
unsupervised video summarization methods have incorporated self-
attention modules or transformer encoders into their LSTM-based
models [10-12], while a few have used standalone transformer en-
coders [8, 19]. These methods primarily focused on swapping
LSTM-based models for self-attention encoders. Despite utilizing
self-attention encoders, these methods still relied on reward-based
training using traditional rewards such as representative/diversity
and length regularization cost [7, 14]. While these methods may
have some success, it is clear that a more comprehensive and inno-
vative approach is needed to truly advance the field.

Our proposed method in this paper is distinct from previous
works in the field. We offer a self-supervised training approach that
trains an encoder to reconstruct missing video sections using a rule-
based masking operation. This process helps the model find and uti-
lize long-term relations between frames instead of simply interpo-
lating the missing information. Such training aims to create a model
that can reconstruct an entire video from a given summary. We also
introduce a pipeline that converts the trained model’s reconstruc-
tion loss values into frame importance scores based on the idea that
a good summary should enable good reconstruction of the original
video. Our contributions therefore are:

1. A self-supervised encoder training method that produces a
video reconstructor to regenerate a video from its summary.

2. A novel automated pipeline that uses a trained reconstructor
with a new restorative score function to calculate frame-level
importance scores and generate restorative video summaries.

2. APPROACH

The effectiveness of a video summary can be evaluated by compar-
ing it to the original video using a video generator model. Specifi-
cally, the closer the reconstructed video produced by the model is to
the original video, the more representative (or of higher quality) the
summary is considered to be. Therefore, we use a high-performing
video generator to assign an importance score to the frames of a sum-
mary based on how well they capture the original video’s content.
The first step is to use self-supervised training to create a video gen-
erator model that can reconstruct videos accurately. Next, we use the
trained model and a reconstruction loss metric to score the individual
frames of a video. We can then generate a video summary for evalu-
ation based on these scores. The overall quality of the summary will
depend on how well the most critical frames, as determined by the
scoring algorithm, can capture the content of the original video. In
this section, we will describe the multi-head self-attention encoder
that we use in our approach, and the self-supervised training pro-
cess and its parameters. We will also outline the algorithm that uti-
lizes the trained encoder model to generate frame scores and how it
is used to create a video summary.
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Fig. 1. Encoder model and the self-supervised training process.

2.1. Model Architecture

Fig. 1 displays the block diagram of our model. We use a single-
layer multi-head self-attention encoder from a transformer model
presented in [21]. This encoder is composed of two sublayers fol-
lowed by a normalization layer. The first sublayer is a multi-head
attention module. The second sublayer is a fully connected feed-
forward network consisting of two linear transformations with a
GeLU activation between them. For ease of implantation, we used
the encoder architecture introduced in [22]. Our model also includes
two Fully connected linear compress and expansion layers that con-
vert Iqim, t0 Haim and back. 1g4;,, presents the dimension of feature
arrays of the input video frames (1024 for the two test benchmark
datasets of TVSum and SumMe) and H 4;., presents the dimension
of the compressed (hidden) vectors, 512. Hpym and Ly, are the
number of attention heads and encoder layers, respectively. Hyum
is set to 8, and Lyqm is set to 1.

2.2. Self-supervised video reconstruction training using random
window maskeding

The video reconstructor model is trained in a self-supervised manner
using a reconstruction loss that compares the original video input
with its reconstructed version. This means that the model can be
trained without any external labels, using only the original video
as the ground truth. The process involves dividing the video into
multiple samples and applying masks at different random positions.
The following steps outline the specific procedure for this process.
The first step of the image sequence split could be performed in
two ways: sequential split and dilated split. In a sequential split, ev-
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Fig. 2. Video splitting and random masking algorithm.

ery Srten number of sequential frames is selected as one sample. The
starting position for each split shifts by A during each epoch. A is
a random number in the range of £[0  SLen /2] and is independent
of other splits. In the dilated split, each video is sampled into sec-
tions of Sr.ey, frames with a dynamic dilation that changes based on
the video’s length. The splitting process is illustrated in Fig. 2.

It is crucial to explain the concept of shots to comprehend the
second step of the random masking operation. A shot refers to a
continuous sequence of similar frames in a video. A representation
of an input segment is displayed at the top of Fig.2, where each shot
is represented by a unique color. The shot boundaries are generated
using Kernel Temporal Segmentation (KTS) [23] and used in the
implementation of the second step of the random masking operation.

The second step of the process, random masking, selects a por-
tion of each segment randomly for masking. Three rules govern the
selection process. First, the number of chosen frames is set to Mr%
of the size of each segment. Second, for each selected frame, a max-
imum of W, — 1 additional frames from the same shot may be se-
lected (forming a ”window”). The selection may be limited either by
the shot boundary or the window size (W5). Third, not all of the cho-
sen frames will be masked. Each selected window has an 80% prob-
ability of being masked, a 10% chance of being replaced with an-
other unselected portion of the same size (replacement), and a 10%
chance of remaining unchanged (No change). This is to enforce a
dynamic range for the masking ratio. The specific above numbers
are based on studies in self-supervised learning in NLP [24].

Finally, after a segment is prepared, it is passed to the model for
reconstruction. The model then has to reconstruct any masked or
replaced frames. The content of the reconstructed frames are then
compared to their original content to generate a loss value. The loss
function used in this process is a combination of the Mean Absolute
Error (MAE) and the Cosine Embedding (CE) loss functions (s and §
in Eq. 1 represent the original and reconstructed frame embeddings.).
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2.3. Frame Score Generation

In this section, we explain our proposed iterative random masking
approach that is used for frame importance score generation that uses
the self-supervised trained model to rank the significance of each
frame. Our scoring method quantifies the ability to reconstruct the
original video from its summary using a restorative score function.
The restorative score quantifies how good the frames are at recon-

structing the original video from its summary if they are included
in the summary frames. This pipeline repeats the following process
N = 30 times. In each iteration:

1. The input video is divided into multiple segments of duration
SLen, using the same method described in Section 2.2 and
shown in Fig. 2, with the exception that A, the random split’s
starting position, is set to 0.

2. A random percentage (o%) of the frames in each segment is
then selected and masked (Window size W5 is set to 1). The
partially masked segment is passed to the trained model (o
has a similar function to the length regularization factor used
in some SOTA methods such as [8, 13-16]).

3. The reconstructed segment is compared with the original (un-
masked) video segment using“CE+MAE” loss function.

4. A restorative score is generated using the Sigmoid(—Loss)
operation and is assigned to the non-masked frames.

After all N iterations are complete, a score is calculated for each
frame using the average of all scores assigned to it over NN iterations.
Algorithm 1 depicts the frame score generation pipeline. In this al-
gorithm, C is the counter for the number of times a single frame is
assigned a score. Naturally, frames included in multiple segments
will have more than one score. Therefore, in the last step, The aver-
age score for each frame is calculated.

Algorithm 1: Frame Score Generation Pipeline

Input: V = [Fi1, Fy, ...FL]
Counter: C+ [c1, ¢2, ...c] + [0, 0, 0, ..];
Importance Scores: I+ [i1, 42, ...iz] < [0, 0, 0, ...];
V is split into multiple segments [s1, s2, ...];
S « [s1, S2, -..];
for s € S do
for n < 1to N do
M <+ RandomMasking(s,0=0.85,W=1);
§ <+ Model(M);
Loss < CE(s,5) + MAE(s,3);
Score < Sigmoid(-Loss);
for F € sdo
if F' is not masked then
cp < cp +1;
ir < ip + Score;
end
end

end
end
Output: [+ é

2.4. Summary Generation

To have a fair comparison with the reported literature, we used the
same algorithm as the SOTA [6, 8-16] to convert the generated frame
importance scores to a video summary. Generally, most summary
generation methods create summaries by selecting the most impor-
tant (informative) shots from a video. A shot’s importance is de-
termined by averaging the frame-level scores of all the frames that
constitute that shot (shot-level importance score). The objective is
to select as many as possible the highest-scored shots while staying
within a specified length limit for the summary. Naturally, shorter
shots with higher importance scores are more likely to be selected in
this process. The typical rule for video summary generation is that



the summary should be within 5% to 15% of the original video’s
length. Therefore, we set the length limit for the summary to 15%.

This selection step is a 0/1 Knapsack problem that is optimally
solved using dynamic programming [25]. The developed solution to
this problem is the resultant video summary.

3. EXPERIMENTS AND RESULTS

To ensure a fair comparison between our method and the SOTA, we
used the same evaluation procedure reported by the SOTA [6, 8-16].
The details of this procedure and our results are presented next.

3.1. Datasets and Evaluation methods

The performance of our proposed method is evaluated on two bench-
mark datasets of SumMe [26] and TVSum [27]. The TVSum dataset
is composed of 50 videos with durations of 1 to 11 minutes. Each
video is annotated by 20 users by creating importance scores at the
frame- and shot-level. Users gave a score of 1 to 5 to each frame or
shot. The SumMe dataset comprises 25 videos with durations of 1
to 6 minutes. Each video is annotated by 15 to 18 annotators in the
form of key shots selection. Annotators produced a video summary
(Iength range set to 5 to 15% of the video length) by selecting the
most informative shots (video fragments).

The primary evaluation algorithm used by most SOTA video
summarization methods is the F-Score similarity measure. The F-
Score measures the similarity between the generated video summary
to that of the user-annotated summary by looking at the overlap
between the User summary (U) and the Automated summary (A).
Eq. (2) demonstrates the formula for the calculation of F-Score. In
this equation, P and R are Precision and Recall and Len refers to
the length/size of an array.
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For each video in SumMe and TVSum datasets, the video sum-
marization algorithm’s output is compared against all user-generated
annotations. This comparison results in multiple F-score values ac-
cording to the number of annotations. To obtain a single F-score,
a reduction operation is performed. For TVSum, the established
benchmark guideline is to take the average of all F-scores as the fi-
nal result, whereas for SumMe, the final F-score is determined by
selecting the maximum F-score among all evaluations. After gener-
ating the F-scores for all videos of each dataset, an overall F-score
is calculated for each video summarization method by taking the av-
erage the F-scores of all videos in that dataset. We used the prede-
fined 5-fold data splits (80% training, 20% test) of each dataset. The
experiment is repeated 5-times (once for each split), and the average
results are reported.

3.2. Implementation Setup

Following the standard setting utilized by the SOTA unsupervised
video summarization methods [6, 8-16], we used available video
feature arrays extracted by [28]. [28] generated the video fea-
ture arrays by (1) downsampling the input videos to 2 frames per
second (fps), and (2) generating the 1024 dimensional output of
GoogleNet’s [29] penultimate layer for the sampled frames.

The self-supervised training step is performed over 250 epochs.
Mpr and Wy are set to 25% and 8, respectively. The batch Size
is set to 256. We used AdamW optimizer with a Cosine learning
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Fig. 3. Learning rate curve during the self-supervised training.

Table 1. F-Scores results. * highlights models with different o for
each dataset and ** methods with different o for each fold.

Dataset |  SumMe | TVSum |
Method | F-Score | Rank | F-Score | Rank | Avg Rank
SUM-GAN [6] 41.7 7 56.3 8 7.5
Cycle-Sum* [16] 41.9 6 57.6 7 6.5
DR-DSN* [7] 41.4 8 57.6 6 7
SUM-GAN-AAE* [14]| 48.9 4 58.3 5 4.5
SUM-GAN-sl* [15] 47.8 5 58.4 4 4.5
CSNet [9] 51.3 2 58.8 3 2.5
AC-SUM-GAN* [13] 50.8 3 60.6 2 2.5
RS-SUM (ours) 52.0 1 61.1 1 1
Results with the different o for each split
CA-SUM** [8] 51.1 2 61.4 1 1.5
RS-SUM (ours)** 52.5 1 61.4 1 1

rate scheduler. Fig. 3 depicts the learning rate curve during the self-
supervised training. During the frame score generation step, o is set
to 85%, which translates to a summary length of 15%.

3.3. Performance Comparison

The performance of the proposed method, Restorative Score video
summarizer (RS-SUM), is compared against the leading SOTA in
Table 1. These results indicate that our model ranks first on both
TVSum and SumMe datasets. Unlike most mentioned methods, RS-
SUM uses the same masking ratio, 0%, for both datasets. Many
SOTA methods, such as those indicated by * in Table 1, use a term
called the Length Regularization Factor [6-8, 13—16] to penalize the
selection of a large number of key frames in the summary during
training. These methods typically train multiple models with dif-
ferent o values (between 0.05 to 0.95 with 0.05 steps) and only re-
port the highest value for each dataset. This means that two different
models are trained and tested on each dataset. In contrast, we use a
unified value of 0.85 for both datasets.

Moreover, CA-SUM [8] trained multiple models with different
o values on each data fold and recorded the highest F-score for each
data split with a different . This is unlike our method that keeps the
parameters fixed for all presented results. As a result, we separated
their results from the other methods in Table 1.

4. CONCLUSION

We proposed a new unsupervised video summarization pipeline that
uses a stable self-supervised training method with a self-attention
encoder. Our self-supervised training approach is designed to gen-



erate a model that can reconstruct a video from its summary. Our
proposed iterative pipeline uses the trained encoder to assign impor-
tance scores to each frame. We demonstrate the effectiveness of our
algorithm by testing it on two benchmark datasets of, TVSum and
SumMe, using the same configurations as previous SOTA works.
Our system achieves a new F-score record on both datasets. Our fu-
ture work will focus on reducing the overhead cost during the infer-
ence stage caused by the iterative manner of frame score generation.
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