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Abstract—Identifying embryos with the highest implantation
potential is one of the most critical tasks in In Vitro Fertilization
(IVF) treatment. We propose a classifier for predicting an
embryo’s implantation outcome by analyzing time-lapse images
during the blastocyst stage. We report a novel data regularization
method called Timed Data Incrementation (TDI) to address the
length variation in time-lapse image sequences. Sequences with
variable length could add significant bias in any training-based
method and ultimately lead to an over-fitting or a non-converging
system. Our proposed system outperforms the reported state-of-
the-art by 2.18% in accuracy (73.08%). The current state-of-the-
art is only trained and tested on a single blastocyst image from
many embryos. However, to the best of our knowledge, we are
the first to utilize time-lapse sequences for embryo implantation
outcome prediction. Finally, We show that TDI could benefit
other AI-based systems requiring analyzing videos with different
capture frequencies or lengths in various applications.

Index Terms—IVF, Machine Learning, Time-lapse Image Se-
quence, Classification, Video Analysis

I. INTRODUCTION

Infertility is a reproductive disease that affects over 180
million people around the world [1]. In-Vitro Fertilization
(IVF) is one of the most common fertility treatments done
worldwide [2]. The success rate for IVF remains at 30%
despite the improvement in techniques and technologies. IVF
involves fertilization of multiple ova retrieved from a female
patient in-vitro. Fertilized ova (zygotes) stay in an incubator
with a controlled environment for five days. The development
process is then recorded and monitored through time-lapse
imaging systems. On the 5th day, one or more embryos are
selected to be transferred to the patient’s uterus. Transferring
multiple embryos was a strategy to increase the IVF success
rate. It, however, increased the risk of multiple pregnancies
and complications at birth [3]. Today the primary strategy for
optimizing IVF’s outcome is transferring one embryo with the
highest implantation potential. The most common selection
process is grading an embryo at its blastocyst stage (day-
5 embryo) [4]. Such grading is performed by embryologists
based on the characteristics of a blastocyst’s main components.
The grading process is subjective and requires an expert

embryologist. Additionally, it could be inconsistent among
experts/clinics with different grading systems [5].

Here, we propose a system for predicting implantation
outcomes using time-lapse sequences of an embryo during
blastulation. Utilizing time-lapse video sequences in Artificial
Intelligence-based applications is the next natural trend in
deep learning-based applications, especially in the medical
image analysis field. The only reported work for analyzing
an embryo’s time-lapse video sequences is in [6], where
time-lapse video sequences of human embryos were used for
predicting fetal heart pregnancy. We introduce Timed Data
Incrementation (TDI) to reduce a potential bias that arises
from image sequences with variant lengths. Feeding videos of
high redundancy to a model without proper regulation of the
length will lead to a bias in the model toward lengthier videos.
The effect of such a process is similar to repeating some of the
training images of one class when training an image classifier
model. Here, the apparent imbalance is not between the
classes and is instead between the samples. Such bias can be
even more destructive when limited training data is available.
We utilized a dual-path structure to process blastocysts at the
early and advanced development phases. Our model consists
of two separated processing paths with a shared section.
Therefore, we suggest a new data loading method, Random
Repetitive Training (RRT), that prepares dual data batches to
avoid repeating frames. Our main contributions include:

1) Timed Data Incrementation (TDI), An epoch-wise data
injection strategy of the training phase for a structural
increase in training data, according to the training stage
and the length of each data.

2) A data load and batch preparation technique, called
Random Repetitive Training (RRT), for applications with
simultaneous multipath model training.

The remainder of this paper is structured as follows. The
following related works section reviews the researches that
focused on using machine learning-based strategy for auto-
matic grading or outcome prediction of embryos. Section III
examines the available data and its format, then the proposed
classifier, TDA, and the RRT algorithms are presented. Finally,
Section IV showcases our results on our embryo time-lapse
image dataset and the effect of the addition of TDA and RRT978-1-6654-3288-7/21$31.00 ©2021 IEEE



on the performance of our classifier. These results are then
compared with the reported state-of-the-art. This section also
includes experimental results highlighting the effect of the TDI
algorithm by testing it on another time-lapse image dataset.

II. RELATED WORKS

A. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have seen
significant growth in applications of medical image analysis
such as detection or classification of breast cancer cells [7],
stem cells [8], and skin lesions [9]. Deep CNN architectures,
Resnet [10] and Inception [11], have offered better accuracy
in image classification tasks. They have been extended
to applications in videos and time-lapse image datasets.
Some examples include CNN+RNN models [12] and 3D
CNN models [13]. CNN+RNN models spatial and temporal
information separately, where 3D CNN models combine
spatial and temporal processing.

B. Machine-learning based human Embryo analysis

Previous works focus on assessing human embryos’ quality
using computer-based algorithms. They are divided into
two categories:(i) grading the quality (ii) predicting the
implantation or live-birth outcome.

1) Embryo grading: Embryo grading is a scheme for em-
bryologists to select the best embryos for transfer. Commonly,
day-5 embryos (blastocysts) are graded visually using their
morphological attributes [14]. These attributes are:

(i) Expansion level of embryo’s cavity (2 to 6)
(ii) Inner Cell Mass’s (ICM) cells’ distinctiveness and com-

pactness (A to C)
(iii) Trophectoderm’s (TE) cell regularities and formation (A

to C) [4].
Many attempted to automatically grade embryos at different
growth stages via processing single images [15]–[17]. [16]
graded an embryo by classifying ICM components separately
with an accuracy of 75.36%. [17] extended grade classification
mechanism to time-lapse video sequences of day 1 to day
5. The structure in [17] utilized a CNN-based model as the
feature vector extractor with individual frames as its input.
An RNN structure performed the final grading of TE and
ICM with an accuracy of 74.15%, which is lower than their
single image counterpart method [16]. [15] introduced a deep
learning-based model for single embryo images to classify
blastocysts as good or poor with a precision of 95.7%.

2) predicting implantation or live-birth outcome: Since
embryo grading is subjective, the actual outcome seems to
be a better indicator of embryos’ quality. Here we define
implantation as achieving a positive pregnancy test and live-
birth as the live birth of a baby. The dataset used in this group
of works includes images of embryos transferred with known
outcomes. [18] introduced a conventional machine learning
classifier for live-birth prediction. It required manual segmen-
tation of boundaries of blastocysts along with handcrafted
feature extraction. The extracted features are then fed into
an ensemble of classifiers for further analysis (This work is

Fig. 1. Embryo development stages(a) pronuclear, (b) two-cells, (c) Three or
four-cell, (d) Over five cells, (e) Morula,(f) Blastocyst.
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Fig. 2. Examples of Embryo grades of the last frame of a sequence. The top
row samples have positive implantation outcome. The bottom row samples
have negative implantation outcome.

refered to as HFC). [19] proposed a multi-path deep learning-
based model that used implantation annotations. It reported
an accuracy of 70.9% for implantation outcome. In [20], a
dataset with live-birth annotation was used to train a multi-
layer CNN model combined with the Conventional Embryo
Evaluation(CEE) algorithm as the live-birth predictor with an
average accuracy of 68.9%.

All the above methods are based on a single blastocyst
image of embryos right before transfer. Our goal here is to
present a system that utilizes a time-lapse image sequence of
an embryo during its blastulation and predicts the implantation
outcome.

III. METHODOLOGY

A. Data

The dataset used in our work comprises 127 time-lapse
video sequences of embryos developed in an EmbryoScopeTM
time-lapse incubator (Vitrolife) for five days.

The image capture frequency was at 15 minutes. Each frame
is an 8-bit image of 500×500 pixels. Expert embryologists
annotated each sequence into six sections/intervals according
to its development stage, including pronuclear, two-cells, three
or four-cell, over five-cell, morula, and blastocyst (Fig. 1).
The embryologist also grades the embryo based on the last



Fig. 3. (a) Raw input, (b) optical flow sum, (c) detected borders, (d) Final
image.

frame of each sequence. Sample of graded embryos and their
implantation outcome is shown in Fig. 2.

Here, we only utilized and crop frames from the blastocyst
section. The cropped videos of blastocyst frames are referred
to as sequences in the remainder of this paper. A blastocyst’s
morphological attributes are different at the beginning of its
formation from later when transferred to the body (Fig. 4).
Visual features at the beginning are more similar to those
of day-4 (morula stage). Therefore, each blastocyst video
section is divided into two at its mid-frame, referred to early
and advanced sub-sequences. This is the main reason for
our dual structure. Each sequence’s length varies from 2 to
154 frames due to embryos’ different progress rates. Out of
127 sequences, 59 (47%) resulted in positive, and 68 (53%)
negative implantation.

B. Data Preparation- Hard Attention Process

The first step for the data preparation is to identify the image
region that includes embryonic cells. We used the thresh-
olded optical flow [21] of every two consecutive frames. The
threshold value was set to 0.25×median(optical flow sum)
across the image. We also utilized the contour detection in
the OpenCV library [22] to identify cells’ contours. The
coordinates of the contours were then used for hard attention
cropping [23] of the image that removed areas outside the
region of interest. Next, an image patch was created centered at
the region of interest. The above process is illustrated visually
through Fig. 3-a to -d.

The following standard data augmentations are applied on
each patch: crop at a scale ratio of 0.85 to 1 (randomly selected
ratio), spatial shift on both dimensions (randomly selected
between 0-5% of the image size), rotate by an angle (randomly
chosen between 0 to 45 degrees) and flip in one of the four
directions (up, down, left, right) randomly. The images were
then resized to 224× 224 pixels before their intensities were
normalized.

C. Model architecture

The proposed CNN architecture consists of two separate
processing pathways, each for one category of the early or the
advanced blastocyst sequences (Fig. 4). Our tests show that
such a separation improves the model’s performance, as the
visual characteristics of the two are considerably different.
The feature vectors of both paths were concatenated before
being fed into the Fully Connected layer.
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Fig. 4. The dual path model: bottom- advanced stage , top- early stage.

D. Timed Data Incrementation

TDI is a novel strategy that controls input sequences in the
training data based on the training’s progress. Without TDI in
the training phase, the model might be exposed to more frames
from videos with longer lengths. Such imbalance exposure
causes a destructive bias in the model. TDI specifies and ranks
sequences for training according to their lengths. The main
goal is to limit the training data to videos with shorter lengths
and gradually add the other videos as the training progresses.
The training data in the early epochs comprises samples from
sequences that are shorter than a given length. The length
limit is modified once a certain number of training epochs are
achieved. The process continues until all training sequences
are integrated into the training operation. In short, TDI filters
out and limits the starting training sequences, and upon reach-
ing specified injection epochs, the filtering criterion expands to
include more sequences. This process continues until all of the
data is included in the training. The filtering criterion for TDI
is the sequences’ length. The frequency of the injection rates is
a hyperparameter that can be modified based on the problem.

E. Random Repetitive Training (RRT)

Random Repetitive Training (RRT) is an algorithm that
creates fresh combinations for our model’s last layer on the
same epoch that could have repeated frames for the separate
section of each path. If the early and the advanced sections of
the sequence each have L frames, a frame from one section
can be randomly paired with another frame from the other
section, creating a total of L image pairs in an epoch. This
strategy ensures that none of the images are repeated in
that epoch. We called this Non-Repetitive Training (NRT).
In RRT, however, L pairs are created randomly on the spot
without the knowledge of the other pairs. When the model
is trained, elements of the pair might have already passed the
model on the same epoch, but the combination would be new
for the last layer. Until this position, we have been trying to
avoid repeating samples to lessen the bias buildup. However,
at this stage, the error of a new combination in the last layer
delays the bias buildup through the separate model paths.



TABLE I
COMPARISON OF THE IMPLANTATION PREDICTION ACCURACY IN PER

SEQUENCE MANNER.

Model TDI RRT PRC1 RCL2 JI3 ACC4

Single path
7

7 65.9 61.67 44.65 62.82

3 67.57 63.17 46.25 64.36

3

7 66.07 64.43 47.48 65.87

3 71.52 66.7 50.18 67.07

Dual path
7

7 69.79 64.52 46.25 63.46

3 71.81 65.87 49.33 66.67

3

7 73.65 69.79 53.74 71.15

3 74.11 72.62 57.22 73.08

Single Stream [19] 63.6 63.6 46.7 62.8

Raw+Mask CNN [19] 71.1 72.7 56 70.9

HFC**[18] 61.5 60.5 44 62

CEE + CNN (all age ranges)**[20] 66.2 69.5 50.2 68.9
** Live-birth 1 Precision 2 Recall 3 Jaccard-Index 4 Accuracy

F. Network Training

During the training, the input sequences are divided
into image pairs either through NRT or RRT, and their
corresponding outcome labels are passed to the model.

G. Network Testing

Steps to predict the outcome of an input test sequence
are as follows: First, the sequence is cut in half. Second, all
possible combinations of image pairs are created. In each
pair, one image is selected from each half. For a sequence
with 2L length, the number of created sets would be L2.
Finally, the predicted probabilities of all pairs are averaged
to create a single prediction for the input sequence.

IV. EXPERIMENTAL RESULTS

Our model was trained and tested on our dataset described
in Section III-A. We used the Cedar cluster of Compute
Canada [24] that is equipped with NVIDIA V100 Volta (32G
HBM2 memory). The models were trained with mini-batches
of size 256 over 200 epochs. We set the starting learning rate
at 1e−4, which was then reduced by a factor of 0.1 on epochs
30 and 80 (the respective values were 1e−5 and 1e−6).

TDI algorithm’s filtering length upper limit was set to 15
initially (only those sequences with lengths shorter than the
15 were let through). The upper limit was then increased to
30, 45, and 200 at epochs 5, 10, and 15, respectively. The
number of sequences between these video lengths accounted
for roughly 25% of the entire dataset. To assess TDI’s
performance, we also included experiments with non-TDI
configurations. To demonstrated RRT’s impact, we included
experiments with NRT configuration (described in Sec-
tion III-F) too. Additionally, we presented test configurations
with a single path model for an entire blastocyst sequence.

TABLE II
EFFECT OF TDI ALGORITHM ON I3D TRAINED ON SBU RGB.

Algorithm PRC RCL JI ACC

TDI Off 95.2 94.0 90.5 94.5

TDI On 95.9 94.8 91.6 95.3

The prediction outcome for the Dual-path model was gener-
ated using the method described in Section III-G. In the single-
path model, all the frames of each sequence were given to a
Resnet18 [10]. Then the single frame predictions were aver-
aged together to create each sequence’s predicted outcome. Ta-
ble I details results for 5-fold cross-validation. We divided our
dataset into five sets. We used one section as the test and the
other four as the training datasets in each run. This selection is
shuffled five times, each time different from the times before.
The outcomes of all runs are averaged and reported. The last
two rows of Table I display two reported systems that predict
the live-birth outcome. Please note that it is not appropriate to
compare these two systems directly with our proposed method
in this paper as the outcomes are different (positive pregnancy
vs. live-birth), not every positive pregnancy leads to live birth.
However, it might be useful to the readers to know about those
works in the context of our research.

Table I leads to the following conclusions. The Dual-path
model with RRT and TDI delivers the best performance
over the other configurations. Moreover, TDI improvement is
independent of the model’s configuration.

A. Application of TDI on time-lapse sequences in deep-
learning

To demonstrate the effectiveness of the TDI method, we
present its application on a different system that utilizes RGB
videos of the SBU Kinect Interaction dataset [25]. We used
SBU Kinect ‘RGB video data to achieve an action recognition
task. We fine-tuned a pre-trained I3D model [26] with 5-fold
cross-validation on that dataset’s predetermined folds. Results
for these tests are shown in Table II. Our tests were carried
on under identical conditions (100 epochs, starting learning
rate of 0.0001) once with and once without TDI.

These results demonstrate that TDI is beneficial to other
types of applications and models where the input includes
video sequences with variable length.

V. CONCLUSION

This paper proposed a fully automated approach for pre-
dicting human embryo implantation outcomes from time-lapse
image sequences in the IVF process. We presented a dual-
path CNN that processed blastocyst sequences in two different
classified stages. The dual-path model showed improvement
over the single-path model. This improvement shows that
the evolution of an embryo’s morphological attributes during
the blastocyst stage is substantial and therefore, it justifies
increasing the computational cost. We also presented a novel
algorithm (TDI), which regulated the training data based on



input sequences’ lengths, reducing the potential bias associated
with them due to the frame redundancy and the slow-varying
scenes. Experimental results showed that our system delivers
an implantation outcome prediction accuracy of 73.07% for
our time-lapse image sequences. TDI increases the mean
prediction accuracy by 4.96% from non-TDI (64.32%). Our
experimental results also showed that the TDI method could
be used in other applications for processing image sequences
with variable length. Moreover, its application is independent
of the model’s configuration.
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