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Abstract—Video analysis requires both spatial and temporal
data analysis, unlike image analysis, which is limited to processing
only spatial information. The added complexity for analyzing
videos translates into the requirement for more sophisticated
algorithms with diverse data to optimize a model. Creating large
video datasets for analysis tasks is challenging, especially in the
medical field, where data accessibility is limited. As a result, many
computationally complex methods, such as 3D-CNN models, are
not well-suited for medical applications. Therefore, innovative
strategies are required to train deep learning (DL)-based models
for limited video data. This paper proposes a system to predict
human embryo implantation outcome in In Vitro Fertilization
(IVF) process by analyzing image sequences captured during
incubation. However, data availability is restricted for this task
as acquiring and annotating data involves several complex
steps. The proposed approach focuses on utilizing morphological
changes of embryos over time and linking them to the outcome.
We convert embryonic microscopic videos into multivariate time
series arrays and apply state-of-the-art time series classifiers to
predict growth patterns and outcomes. However, these classifiers
fail to utilize the temporal patterns in the data and result in
poor performance. Therefore, we propose to modify the time
series classifiers with attention mechanisms that can capture both
short- and long-term dependencies and improve the accuracy
of predicting the success of the IVF procedure. The proposed
method' demonstrates promising results, improving the predic-
tion accuracy by 3.3% for Day 3 and 3.1% for Day 5 embryo
time-lapse videos. Our ensemble classifier achieved a prediction
accuracy of 77.5%, a 5.2% improvement over the state-of-the-art.
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I. INTRODUCTION

In Vitro Fertilization (IVF) is the most common treat-
ment for infertility [1]. The success rate of IVF treatment
is approximately 35% [1]. In IVF, a patient’s ovaries are
hyper-stimulated with hormone injections followed by retrieval
of multiple ova (human eggs). Fertilized ova (embryos) are
cultured inside temperature-controlled incubators, where they
are monitored and imaged at fixed time intervals. Embryos
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are ranked at specific times according to their morphological
attributes and development progress. After 3 to 5 days, the
highest quality embryo(s), as identified by expert embryol-
ogists, is transferred into the patient’s uterus or frozen for
later. Day 3 embryo assessment is performed according to two
criteria: (1) number of cells, (2) quality of the cells [2]. In the
Day-5 assessment, the quality of an embryo is assessed using
characteristics of its three main structures: Trophectoderm’s
(TE), Zona Pellucida (ZP), and Inner Cell Mass (ICM) [3]. The
grading scheme for Day-5 embryos has three scores: (1) the
expansion level of the embryonic cavity, (2) the distinctiveness
and compactness of ICMs cells, and (3) TE cell regularity [3].
Figure 1 (a) and (b) display a Day-3 and a Day-5 embryo,
respectively.

Fig. 1. (a) A day-3 human embryo (red indicates cell centroids and
green fragmentation). (b) A day-5 human embryo (yellow, blue, and
orange indicate TE, ICM, and ZP).

Embryo grading is performed by an expert embryologist,
making it subjective, time-consuming, and expensive. Integrat-
ing artificial intelligence (Al) into IVF and embryo assessment
has significantly improved the accuracy and efficiency of these
processes. By leveraging Al, medical practitioners can predict
which embryos have the highest probability of successful
implantation and subsequent pregnancy, thereby minimizing
the need for multiple rounds of IVF and reducing the financial
and emotional strain on patients.

Embryologists currently use a method of embryo grading
that involves evaluating embryos at a fixed time each day
and inferring their overall quality throughout their incubation
period through quality interpolation based on daily observa-



Fig. 2. Each row presents Day-3 and Day-5 samples of an embryo
image sequence along with its Day 5 grade and implantation outcome.

tions. Such an approach could and would result in the loss of
potentially valuable qualitative information, such as the onset
of certain embryo development stages correlated with implan-
tation likelihood [4] and over-time developmental patterns.
Utilizing Al for embryo video processing is an innovative
solution to tackle the mentioned issue. However, this task
involves complex methods requiring significant training data
to accurately process both temporal and spatial information.
Obtaining videos is a costly and challenging process, and
annotating them is time-consuming, leading to limited data
availability. A viable approach could be to separate the spatial
and temporal processing and training tasks. A model is trained
to extract spatial features and convert the videos into a
new modality first, and a second stage processes temporal
information. However, commonly used methods for this step
have yet to overtake the existing spatial-only analysis models.

In response to the challenges presented, this paper proposes
a novel approach that leverages Time Series Classifiers (TSC)
to utilize informative patterns over different time scales. Our
proposed method trains two deep convolutional neural net-
works (CNNG5s) that act as spatial feature extractors. One model
is trained on Day 3 images, while the other is on Day-5.
Our previous research has demonstrated that separating the
spatial analysis of different embryo stages can lead to im-
proved prediction accuracy due to the unique and substantially
different morphological attributes of each stage [5], [6]. By
applying these trained models, we extract spatial features from
each frame and transform the data modality from time-lapse
images to multivariate time series arrays. We examine the ap-
plication of TSC to correlate long and short-range embryonic
developmental patterns with implantation outcomes.Initially,
the state-of-the-art deep learning-based TSC performed poorly,
despite being the best high-performing models [7], [8] on other
time series classification tasks [9], [10]. Therefore, we had
to modify these networks with a new self-attention block.
In the new attention block, the content-based global self-
attention is combined with a custom Gaussian-based localized

attention to capture and combine the short-range and long-
range temporal dependencies of our dataset.The results reveal
a notable increase in the accuracy of pregnancy prediction.
We also propose an ensemble classifier system that leverages
Day-3 and Day-5 time series analysis results and Day-5 spatial
processing to enhance the prediction accuracy even further.

II. RELATED WORKS
A. Deep Learning in Embryo Quality Assessment

Earlier studies on DL-based embryo quality assessment
methods primarily aimed to develop models for automatic
embryo grading [11]-[13]. One study by [13] aimed to extend
grading to blastocyst image sequences using a CNN+RNN
model. Unfortunately, the inclusion of a temporal analysis
model resulted in a lower accuracy compared to the single-
image grading method proposed in [12].

Recent research has focused on directly predicting outcomes
(implantation or pregnancy test results [14]-[16] or live-birth
results [17]-[21]), eliminating the need for embryo grading.
While [14], [15], [17] used single blastocyst image analy-
sis, [16], [18]-[20] used embryo time-lapse sequences. How-
ever, all [16], [18]-[20] suffer from common issues related
to using highly imbalanced datasets and only recording the
Area Under Curve (AUC), which may not provide an accurate
performance measurement when working with heavily imbal-
anced data.

[18] achieved an AUC of 0.93 on a dataset of 8142 negative
and 694 positive samples. [21] reported a 0.96 AUC on a
highly unbalanced dataset of 15434 embryos, from which
12405 samples were discarded embryos labeled as negative
samples. [16] used transfer learning to convert a pre-trained
CNN+LSTM model to an embryo implantation predictor on
a 216 negative and 56 positive samples dataset, achieving
an AUC of 0.82. [19] trained a Resnet56 [22] to produce a
live birth confidence score on a 379 negative and 91 positive
samples dataset, resulting in an AUC of 0.642. However,
their confidence score interquartile range indicated a failure to
distinguish positive and negative samples. Finally, [20] used an
13D [23] model to predict the live-birth outcome on a dataset
of 2212 videos (plus 15037 discarded embryos) and reported a
separate AUC of 0.68. Their dataset’s class imbalance included
a ratio of 70% negative to 30% positive samples.

Insufficient data and overfitting pose significant challenges
in previous studies, even in the case of 2D deep learning
models that had to solely analyze spatial information for
feature extraction or classification. Due to these issues, the
utilized models were constrained to basic, shallow CNN ar-
chitectures, as the more advanced and intricate models proved
to be unfeasible. This limitation is clearly observed in the
comparison between [6] and [5]. showing that employing
fewer residual blocks in the models led to improved accuracy,
highlighting the occurrence of overfitting as the complexity of
the model increased.

Despite attempts to utilize deep learning for processing both
temporal and spatial information in embryo videos, previous
approaches have proven unsuitable for predicting outcomes.



RNN-based models are not a popular or a good choice for time
series classification [9]. On the other hand, 3D convolutional
models, such as I3D [23], require a large amount of training
data and cannot model long-term temporal dependencies [24].
Here, we utilized the three most popular DL-based TSC
models, FCN [7], ResNet [7], and InceptionTime [8].

B. DL-based Time Series Classifers

The field of time series classification has traditionally relied
on non-deep learning (DL) methods, such as [25]. However, in
recent years, the widespread availability of GPU-accelerated
computation and the ease of access to such hardware have
led to a surge in the popularity of DL-based approaches,
mirroring trends in other domains. A notable limitation of
traditional TSC methods is their inability to leverage GPUs
for training, which severely hampers scalability [8], [25].
In contrast, DL-based TSC methods can effectively utilize
available hardware resources, accelerating both training and
inference processes, and thereby enhancing classifier scala-
bility. Early DL-based TSC approaches employed relatively
simple architectures, including Multi-Layer Perceptron (MLP),
shallow 1D-CNNs, and Recurrent DNNs [9]. However, these
networks exhibited inferior performance compared to tra-
ditional methods on widely used time series classification
benchmarks, such as the UCR benchmark consisting of 128
problems [26]. The advent of more complex 1D-CNN archi-
tectures, such as Fully Convolutional Networks (FCN) and
Residual Networks (ResNet), demonstrated that DL methods
could achieve comparable results to traditional approaches
with lower computational complexities and shorter training
times. FCN, a three-layered 1D-CNN model, and ResNet, a
deeper model with eleven 1D convolutional layers organized
into three residual blocks, maintained the input series’ length
throughout their layers. InceptionTime emerged as a DL-based
TSC method that achieved accuracy comparable to the best
traditional techniques. It leveraged multiple inception mod-
ules [27], which simultaneously applied four convolutional
filters of different kernel sizes to the input. FCN, ResNet, and
InceptionTime have consistently ranked among the most suc-
cessful TSC methods, achieving top positions [9], [28] on the
UCR archive [26]. Consequently, these models were chosen
as the baseline for our work. However, in their original forms,
these models hindered the overall architecture’s performance,
necessitating modifications to enhance their effectiveness.

III. METHODOLOGY

The architecture of the proposed DL-based model is shown
in Fig. 3. It comprises three stages: image feature extraction,
time-series analysis, and ensemble voting. Its input is a series
of Day-3 and Day-5 frames from an embryo sequence to
predict the implantation outcome for that embryo.

A. Image feature extraction

We trained two separate CNN structures, D3FS and DS5FS,
to extract feature arrays from the captured Day-3 and Day-5
input frames. The combination of D3FS/DSFS with a fully

connected (FC) layer was trained to predict implementation
outcomes.

B. Time-series analysis

Temporal analysis of the input data is performed in the
second stage of our embryo analysis architecture (orange block
of Fig. 3). This stage takes two main inputs: multivariate time
series feature arrays created by stacking the frame feature
arrays generated from D3FS/DSFS outputs. A third univariate
input is created by stacking the Day-5 binary prediction
outcome across the temporal dimension. This input is not
subject to training and is included solely to ensure an odd
number of inputs for the final stage’s majority voting. The
selection of Day-5 binary prediction over Day-3 binary predic-
tion was based on its stronger correlation with the implantation
outcome, as supported by studies such as [5], [29].

We comprehensively assessed the effectiveness of multiple
cutting-edge DL-based TSC models. Our evaluation included
FCN, ResNet (RES) [7], InceptionTime (IT64) [8] and their
modified variants. These modifications were applied by adding
a self-attention encoder [30] with/without Positional Encoding
(PE) before the Global Average Pooling (GAP) layer (Fig. 4).

In the Modified Encoder (ME) formulation, the attention
matrix A was modified by combining it with A5 using Eq. (1).
Ag € Rf *N encodes temporal placement information through
an asymmetrical Gaussian distribution, where each value in
row ¢ and column j corresponds to distance-based attention
generated using Eq. (2) between the i, and j;, time samples.
F € RN*4 represents the output time series array obtained
from either the FCN, ResNet, or IT64 models. K,Q,V €
RN*d represent the Key, Query, and Value. Wy, Wo, Wy €
R*4 and W € R'*? are the learn-able weight matrices. d, N
represents the input dimension size and the sequence length,
respectively. S scales each matrix row to have a maximum
value of 1, while N normalizes each matrix row by dividing
it by the sum of all its elements.
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In Eq. (2), P; denotes the i;, row of As, and O’Z-Q represent
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Fig. 3. Proposed 3-stage embryo analysis model. Green) Image feature extraction, Red) Time series analysis, Blue) Ensemble voting.
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Fig. 4. Diagram of a self-attention augmented TSC using FCN.

The matrix A, effectively captures localized short-range
patterns by utilizing a Gaussian distribution centered around
each sample. Previous research, such as [31], has demonstrated
that the dispersion of temporal information across the time di-
mension manifests as key segments with Gaussian-distributed
characteristics. The P distributions are influenced by two fac-
tors: the content value and the distance between the samples.
The content value affects the distribution variance at each time
sample through a learnable weight denoted as 1. Additionally,
the relative positional placement information between samples
contributes to the shape of the Gaussian distribution. By
considering these dependencies, A, can effectively capture
and represent both the localized short-range patterns and the
relative positioning information present in the time series
data. Meanwhile, A captures long-range dependencies through
content-based self-attention. The scaling factor S is applied
to ensure that the magnitudes of A and A, are within the
same range and their impacts are balanced. Subsequently, the
normalization operation N is employed to adjust the attention
values, ensuring that they are appropriately scaled and dis-
tributed. This normalization step is crucial for maintaining the
distribution properties of the attention mechanism.

C. Ensemble Voter

In the final stage, The information extracted from Day-3
and Day-5 sequences are combined using majority voting to
generate an outcome prediction. The ensemble voter takes in
three inputs: the classification outputs for the Day-3, Day-5
time series, and the Day-5 average frame score. The final
output is determined by selecting the prediction with the
highest number of votes. We utilized a majority vote approach
rather than aggression for several reasons. Firstly, each TSC
path produced outputs with varying dynamic ranges and scales
due to their separate training. Secondly, we aimed to avoid the
need for additional training by introducing a new learnable
weighted aggregator method. Thirdly, we had an existing,
freely available classification output that could be incorporated
into the final stage without incurring any extra costs. Fur-
thermore, this additional output (Day-5 average frame score)
demonstrated a strong correlation with the desired outcome.

IV. EXPERIMENTS
A. Data

Our human embryo dataset comprises 130 time-lapse image
sequences collected using an EmbryoScope™ time-lapse
incubator (Vitrolife) with a 15-minute acquisition interval
(2 presents a few samples of this dataset). There are 60
positive implantation outcome sequences (46%) and 70 nega-
tive implantation outcome sequences (54%). We classify and
automatically extract images captured between hours 48-72
post-fertilization as “Day-3 sequences,” while those captured
after hour 96 are labeled as “Day-5 sequences.” The Day-3
sequences consist of a fixed 96 frames, whereas the Day-
5 sequences vary in length, ranging between 67 and 96
frames. To standardize the input for the Day-5 TSC model,
the sequences were zero-padded to create 96-frame sequences.



The Day-5 sequences were truncated due to the transfer of
day 5 embryos to the patients based on the discretion of the
embryologist.The dataset contains 12,480 images for Day-3
sequences and 10,097 for Day-5 sequences. The image format
is 8-bit with 500x500 pixels. Images are automatically trans-
lated, Such that the embryo is centered in each frame [6], and
the background region is set to zero. Images are downsampled
to 224 x224 pixels. The dataset is divided into five groups of
26 sequences. We used 5-fold cross-validation for the training
and testing of our models.

B. Setup Configurations and Hyper Parameter

The first step is to train the spatial feature extractor models,
which act as modality conversion models. The D3SF and
DS5SF were trained independently, with one Day-3 and one
Day-5 model trained for each of the 5 folds, resulting in 10
models (5 pairs). Frames were assigned a ground truth label of
positive or negative based on the actual pregnancy outcome,
and binary cross-entropy loss was used to train the models.
The training was done over 100 epochs using a learning rate
of le—4 and an Adam optimizer, as in [5]. Additionally,
during the training process, some image augmentations were
applied, such as random rotation (between 0-45 degrees),
random image flipping (up/down), and random downscaling
(ratio between 0.85 - 1). The batch size was limited to the
number of training sequences, which was 104.

The TSC models were optimized using binary cross-entropy
loss and Adam optimizer with a learning rate of le—6 for
1000 epochs with a batch size of 16. Each TSC model was
trained and tested five times for each of the five data folds,
resulting in 25 instances of each model. The reported results
in the following section are the average performance over 25
instances.

We also tested a bi-directional LSTM model on the Day-3
and Day-5 multivariate TSC arrays as part of our experiments.
The hidden size of the bi-directional LSTM was set to match
the dimension of the input array, 64 for Day-3 and 128 for
Day-5 (Sequence length is the same).

We tested the 13D model, which does not require a feature
extraction stage. The I3D model only captures temporal de-
pendencies in the window of 32 frames. We had to randomly
select 32 sequential frames from each training video for each
epoch. During the inference stage, I3D takes in the whole
image and it aggregates the predictions. To work within the
limitations of GPU memory, we set the batch size to 16.

The majority voter model, which does not require further
training, relies on TSC models for Day-3 and Day-5. We
selected the best-performing TSC model for each day to set up
the majority voter model. The crucial point is that we trained
5 instances of a TSC model for each data fold. To ensure
comprehensive testing of the majority voter, we repeated the
testing operation 25 times for each data fold, once for each
combination of Day-3 and Day-5 instances. This resulted in a
total of 125 experiments. The reported results for the majority
voter model are the average of all 125 experiments.

All experiments are performed on a Compute Canada [32]
node with an NVIDIA V100 Volta GPU (32G) unit.

C. Results
TABLE I
HUMAN EMBRYO OUTCOME PREDICTION ON DAY-3 AND DAY-5 IMAGE
SEQUENCES.
| Day-3 | Day-5
Model | PER' RCL2 JI3 ACC#4 PER' RCL? 513 AcCC*
FC+GAP [5] | 73.0 707 535 700 | 744 718 559 723
13D | 649 617 410 618 | 683 644 388 654
Bi-LSTM | 682 656 483 658 | 279 498 360 51.8
FCN | 686 684 509 682 | 724 717 559 718
FCN+ME+PE | 73.9 727 572 729 | 753 745 594 746
FCN+ME | 769 739 583 742 | 753 734 576 735
RES | 683 665 486 668 | 743 729 567 726
RES+ME+PE | 730 706 543 708 | 744 722 564 72.6
RES+ME | 724 706 542 705 | 751 728 570 73.1
1T64 | 61.1 637 446 637 | 657 679 495 67.3
IT64+ME+PE | 71.8 704 540 710 | 769 751 599 752
1T64+ME ‘ 69.3 69.7 533 70.0 ‘ 747 733 579 737
I Precision  2Recall 3 Jaccard-index  * Accuracy

Table I displays the results of experimenting with different
classifiers on sequences from each day. The first row of the
table shows the results obtained by averaging the output of
the spatial classifier (D3SF/DSFS + FC) over time. This is
achieved by applying a Temporal Global Average Pooling
(GAP) layer to the output of the Spatial Classifier. These
results demonstrate that the performance of the base TSC
models, without attention augmentation, is inferior to that of
the no temporal analysis model of each day (i.e., “FC+GAP”
and “FC+GAP”).

The “I3D” and “LSTM” models, utilized in previous stud-
ies, demonstrated the lowest performance among all the
methods examined. Surprisingly, both models underperformed
even when compared to the base method, which lacks any
form of temporal processing. Furthermore, they also exhibited
inferior performance compared to all other evaluated temporal
processing methods.

The use of the TSC classifiers “FCN+ME” and
“IT64+ME+PE” resulted in an increase in the classification
accuracy by 4.2% and 2.9% for Day-3 and Day-5 sequences,
respectively, compared to the previous state-of-the-art
method [5], which lacked temporal analysis. As a result,
these TSC classifiers were selected for the final model on
their respective days.

The results of our Majority Voter model are shown in Ta-
ble II. This proposed model includes image feature extractors,
time series analysis, and ensemble voting. It is 6.6% more ac-
curate than the “Blastocyst prediction” model from [14], which
uses single blastocyst stage images as input. The proposed



TABLE II
EMBRYO IMPLANTATION OUTCOME PREDICTION RESULTS.

Prediction | Method | PER' RCL? JI3 AcCC*
Live-birth | CNN+ CEE [17] | 702 714 553 743
| HEC [15] | 615 605 44 62
| Multi-stream CNN [14] | 71.1 727 56 709
| Day-3 GAP [5] | 73.0 707 535 700
Implantation | Day-5 GAP [5] | 744 718 559 723
| Day-5 Blastocyst GAP [6] | 74.1 726 572 738
| Day-3 TSC | 769 739 583 742
| Day-5 TSC | 769 751 599 752
| Majority Vote | 788 773 629 715
IPrecision 2Recall 3 Jaccard-index * Accuracy

model is also 7.5% and 5.2% more accurate than individual
“Day 3 FC+GAP” and “Day 5 FC+GAP” [5] models.

V. CONCLUSION

This paper presented the challenges of analyzing video data
with data scarcity and complex long-range temporal patterns. It
then conducted experiments to predict the pregnancy outcome
of human embryo implantation in IVF using this type of
data. We proposed a novel approach that converted video data
into multivariate time series and utilized intelligent attention-
augmented time series classifiers for outcome prediction. The
proposed approach demonstrated a significant improvement in
accuracy compared to the existing methods by delivering a
prediction accuracy of 77.5% by combining Day-3 and Day-5
models. As a result, our approach is reliable for predicting IVF
outcomes, aiding clinicians in making informed decisions, and
improving success rates. In addition, the study highlighted the
importance of customized solutions that address the unique
challenges and limitations associated with specific data.
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