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Abstract We present various results on multiplying cycles in the symmetric group.
One result is a generalisation of the following theorem of Boccara (Discret Math
29:105–134, 1980): the number ofways ofwriting anoddpermutation in the symmetric
group on n symbols as a product of an n-cycle and an (n−1)-cycle is independent of the
permutation chosen. We give a number of different approaches of our generalisation.
One partial proof uses an inductive method which we also apply to other problems.
In particular, we give a formula for the distribution of the number of cycles over all
products of cycles of fixed lengths.Another application is related to the recent notion of
separation probabilities for permutations introduced by Bernardi et al. (Comb Probab
Comput 23:201–222, 2014).

Keywords Symmetric group · Products of cycles · Separation probabilities

1 Introduction

We begin by introducing standard definitions and notation.
Let n be a positive integer. A partition λ of n is a weakly decreasing sequence of

positive integers (λ1, . . . , λr ) whose sum is n, and we write λ � n or |λ| = n. We
call the λi the parts of λ. The number of parts r is the length of λ and we write this
as �(λ). We will also use the exponential notation λ = (1m1 , 2m2 , . . .), where mi (or
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mi (λ)) is the number of parts of λ equal to i . For any non-negative integer a < n, a
partition of the form (n − a, 1a) is called a hook.

LetSn be the symmetric group on the symbols [n] := {1, 2, . . . , n}. It iswell known
that the conjugacy classes ofSn are indexed by partitions of n; a permutation’s weakly
decreasing list of cycle lengths determines the partition giving its conjugacy class. We
call this partition the permutation’s cycle type, and we denote it by Cλ the class of
permutationswith type λ. Any permutationwhose cycle type is a hook is called a cycle,
and, more specifically, a permutation with cycle type (n − i, 1i ) is an (n − i)-cycle.
A full cycle has type (n).

Let ε be the signature of a permutation; that is, ε(σ) = 1 if σ is an even permutation
and−1 otherwise. We abuse notation and write ε(λ) for a partition λ, which is the sig-
nature of any permutation of type λ, and we call the partition even or odd accordingly.
It is well known that a partition λ is even if and only if |λ| − �(λ) is an even integer.

For a partition of λ of n, let Kλ be the formal sum of all elements in the group
algebra of Sn with cycle type λ. The set {Kλ : λ � n} forms a basis for the centre of
the group algebra. Thus, for partitions μ and ν of n, we have an expansion

Kμ · Kν =
∑

λ�n
cλ
μ,νKλ.

The numbers cλ
μ,ν are known as the connection coefficients of Sn and are the central

objects of this article. Equivalently, the connection coefficient cλ
μ,ν gives the number of

ways of writing a fixed permutation of cycle type λ as the product of two permutations
of cycle type μ and ν, respectively. It is this latter combinatorial interpretation of the
connection coefficients that we focus on in this article.

Finding cλ
μ,ν is an important problem in algebraic combinatorics. See for example

the early work of Farahat and Higman [4], Walkup [20], Stanley [16], Jackson [10]
and Goulden and Jackson [7]. The connection coefficients of the symmetric group
also appear in contexts outside of algebra or combinatorics. In particular, Hanlon,
Stembridge and Stanley relate them to the spectra of random matrices in [9], while
Jackson and Visentin [11] establish a connection with rooted maps embeddable on
orientable surfaces.

A rather general formula for cλ
μ,ν is due to Goupil and Schaeffer [8]. But this result,

like most results before it, requires that at least one of the three partitions λ,μ or ν is
(n). Since

|Cλ|cλ
μ,ν = |Cμ|cμ

λ,ν,

we see it is immaterial which one of λ,μ or ν is (n).
The reason why many of the known results require one of λ,μ or ν to be (n) is

that a common tool to compute these numbers, which is central in a number of the
articles above, is the well-known expression relating the connection coefficients to
the irreducible character values of the symmetric group, contained in Proposition 2.1
below. This expression, which is not specific to the symmetric group, is in general not
tractable for arbitrary partitions. When one of the partitions is (n), however, there is
a substantial simplification in the formula given in Proposition 2.1: only characters

123



J Algebr Comb (2015) 42:183–224 185

indexed by hooks contribute to the result. This well-known simplification is contained
in Lemma 2.2 below.

The starting point of this paper is the following observation: when one of the
partitions corresponds to an n-cycle and another corresponds to an (n − a)-cycle for
small a (say μ and ν, respectively), the formula expressing cλ

μ,ν in terms of characters
becomes even simpler.

For partitions λ � n and ρ � a with n ≥ a, we denote by νρ(λ) := cλ
(n−a,ρ),(n); i.e.

νρ(λ) is the number of ways to write a given permutation σ of type λ as the product
of a n-cycle α and a permutation β of type (n − a) ∪ ρ. We present the following
theorem.

Theorem 1.1 Let n and a < n be positive integers. Fix a partition ρ of a. There exists
an explicit polynomial Zρ in the variables n and m1, . . . ,ma−1 such that, for every
partition λ of n with mi cycles of length i (for 1 ≤ i ≤ a − 1), one has that

νρ(λ) = (1 + (−1)aε(ρ)ε(λ)
)
(n − a − 1)! Zρ(n,m1, . . . ,ma−1). (1)

That νρ(λ) vanishes if (−1)aε(ρ)ε(λ) = −1 is the consequence of a simple parity
argument on permutation signs. The surprising aspect of Theorem 1.1 is that νρ(λ)

depends only on |λ|, ε(λ), m1(λ), …, ma−1(λ) and not on the larger multiplicities of
λ.

Theorem 1.1 can be seen as a generalisation of Theorem 1.2 by Boccara [2].

Theorem 1.2 (Boccara) Let n be a positive integer and λ an odd partition of n. Then

cλ
(n),(n−1,1) = 2(n − 2)!.

A combinatorial proof of Theorem 1.2 is given in Cori, Marcus and Schaeffer [3].
Theorem 1.1 can be established using characters of the symmetric groups, which

we do in Sect. 2.
It is natural to look for a combinatorial explanation of it.We provide two approaches

to this question:

• in Sect. 3, we give a purely bijective proof of Theorem 1.1 in the case ρ = (1a),
extending the work of Cori et al. [3];

• in Sect. 4, we present an inductive proof (assuming Boccara’s theorem), also for
the case ρ = (1a), using only combinatorial arguments.

It seems that the case ρ = (1a) has a particular structure and we shall refer to it as the
hook-case. Finding a combinatorial proof for a general partition ρ remains an open
problem.

Interestingly, each method allows to compute explicitly ν1a (λ) for small values of
a and leads to different expressions for ν1a (λ). For instance, our inductive approach
leads to a compact expression of ν1a (λ) in terms of symmetric functions; see Theorem
4.4. In addition, the case where λ has no parts of length smaller than a, except fixed
points, leads to a particularly compact and elegant formula (proved in Sect. 3.4).
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Proposition 1.3 Let a ≥ 2 be an integer and σ a permutation inSn. Assume σ has no
cycles of length smaller than a, except fixed points (whose number is denoted by b).
The number of ways to write σ as the product of an n-cycle and an (n − a)-cycle is

(
1 + (−1)aε(σ)

) (n − a − 1)!(n − b)!
a!(n − a − b + 1)! .

An advantage of combinatorial proofs is that they can often be used to refine enu-
merative results, taking into account statistics that cannot be studied easily with the
character approach. We illustrate this fact by studying separation probabilities in
products of n-cycles with (n− a)-cycles (here, we can also deal with the case a = 0).

The notion of separable permutations has been introduced in a recent paper of
Bernardi, Du,Morales and Stanley [1]. Themain question is to compute the probability
that given elements are in the same or different cycles in a product of uniform random
permutations of given types (see Sect. 5 for a formal definition). For example, in
Proposition 5.7, we give an explicit formula for the following problem, formulated by
Stanley in [17, pp. 54–71]: what is the probability that 1, 2, . . . , k lie in different cycles
of α · β, where α and β are a random full cycle and an (n − a)-cycle, respectively,
in Sn? Our method is to establish an induction relation for separation probabilities
(Theorem 5.6). This formula is based on the inductive proof of the hook-case Theorem
1.1.

Another advantage of the inductivemethod is that, in principle, it can be generalised
to factorisation problems where we do not require any partition to be (n), although
computations becomemore cumbersome.We give two examples of this kind of results
in Sect. 6:

• an explicit formula for the distribution of the number of cycles in the product of
two cycles of given lengths (Theorem 6.9);

• an involved explicit formula for the separation probability for the product of two
(n−1)-cycles (Theorem6.11). This leads us to an appealing conjecture (Conjecture
6.13), extending a symmetry property proved by the four authorsmentioned above,
given in [1, Eq. 1].

Our final comment is that our methods are elementary and combinatorial. With the
exception of Sect. 2 where we give our character explanation of Theorem 1.1, and
Sect. 4.3 where we give a result in the ring of symmetric functions, we do not use
algebraic tools or combinatorial objects significantly different from factorisations in
the symmetric group.

Outline of the paper Sections 2, 3 and 4 are devoted to the three approaches of
Theorem 1.1: a representation-theoretic proof for general ρ, a bijective proof for the
hook-case, and an inductive proof also for the hook-case, respectively. In addition, at
the end of Sect. 4, we give a formula for a symmetric function related to multiplying
cycles in the symmetric groups.

In Sect. 5, we compute the separation probability of the product of a full cycle and
a (n − a)-cycle.

In Sect. 6.1, we present a number of lemmas needed for the inductivemethod. These
are then used to prove the theorems in Sect. 6 mentioned above.
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2 Character explanation

2.1 Character values and connection coefficients

Let us consider the family of symmetric groupsSn (for each n ≥ 1). It is well known
(see, e.g., [15, Chap. 2]) that both conjugacy classes and irreducible representations
of Sn can be indexed canonically by partitions of n, so the character table of Sn is a
collection of numbers χλ(μ), where λ and μ are taken over all partitions of n and are,
respectively, the indices of the irreducible representation and the conjugacy class.

While the following formula is difficult to attribute to a particular author, character
values of symmetric groups are a classical tool to compute connection coefficients of
the symmetric group (see [11, Lemma 3.3]).

Proposition 2.1 For any triple of partitions (λ, μ, ν) of the same integer positive n,
one has that

cλ
μ,ν = n!

zμzν

∑

π�n

χπ(λ)χπ(μ)χπ(ν)

χπ(1n)
, (2)

where zμ is the integer
∏

i≥1 i
mi (μ)mi (μ)!.

This proposition has been widely used in the last thirty years to obtain explicit expres-
sions for connection coefficients, especially in the case where one of the partitions λ,
μ or ν is (n); see e.g., [8] and references therein.

2.2 Lemmas on character values

Two common methods of computing the characters of the symmetric group are found
in the literature. One method is to use a change of basis in the symmetric function ring
[5], and the second is the Murnaghan–Nakayama combinatorial rule, which is in fact
due to Littlewood and Richardson [13, Sect. 11] (for a modern treatment see [15] or
[14, Sect. 1.7]).

The following lemma is already well known.

Lemma 2.2 Let π be a partition of n, one has:

χπ((n)) = 0,

unless π is a hook, that is (n − i, 1i ) for some i between 0 and n − 1.

This is an immediate consequence ofMurnaghan–Nakayama rule and its use can found
in almost all of the aforementioned articles that use Proposition 2.1 to determine cλ

μ,ν .
A consequence of Lemma 2.2 is that by setting μ = (n) in Proposition 2.1, the sum
over all partitions of n reduces to a sum over hooks, and thus a simple sum of i from
0 to n − 1, which is usually much easier to handle.

When ν = (n − a) ∪ ρ, where ρ is a partition of a fixed integer a, the sum also
simplifies due to the following lemma.
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Lemma 2.3 Let i and n be two integers with 0 ≤ i < n, and π be the hook partition
(n− i, 1i ). Also, let a < n be a positive integer and ρ a partition of a. Assume further
a − 1 < i < n − a. Then,

χπ
(
(n − a) ∪ ρ

) = 0.

Proof The Murnaghan–Nakayama rule implies that χπ
(
(n − a) ∪ ρ

) = 0, unless we
can find a ribbon ξ of size n − a in the diagram of π , given by

n− i− 1

i

so that π with ξ removed remains a Young diagram. As a > 0, the ribbon is not the
whole diagram. Hence, it is either in the first row (which is possible only if n − a ≤
n − i − 1) or in the first column (which is possible only if n − a ≤ i). If neither of
these conditions is satisfied, there is no ribbon of size (n − a) in the diagram of π and
the corresponding character value vanishes, as asserted. ��

The last lemma we need is due to Littlewood [12, p. 139]. See also [16, Lemma
2.2]:

Lemma 2.4 Let i and n be two integers with 0 ≤ i < n, λ a partition of n, and π the
hook partition (n − i, 1i ). Then

χπ(λ) =
∑

ρ�i
(−1)r2+r4+···

(
m1 − 1

r1

)(
m2

r2

)
· · ·
(
mi

ri

)
,

where m j (respectively r j ) is the multiplicity of j in λ (respectively ρ) for 1 ≤ j ≤ i .

Corollary 2.5 With the notation of Lemma 2.4 above, if we fix the sign ε(λ), then
χπ(λ) is a polynomial in the multiplicities m j for j ≤ i, n − i − 1.

Proof The case i ≤ n − i − 1 comes from the explicit expression above. The case
i > n− i −1 follows from the symmetry formula, found in [14, Sect. 1.7, Example 2],
for characters

χπ(λ) = ε(λ)χπ ′
(λ),

where π ′ = (i + 1, 1n−i−1) is the conjugate partition of π .

We now have the necessary tools to give a proof of Theorem 1.1.
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2.3 Proof of Theorem 1.1

Fix a partition ρ of a positive integer a. By Proposition 2.1, for any partition λ of size
n bigger than 2a, one has

νρ(λ) = cλ
(n),(n−a)∪ρ = n!

n · (n − a) · zρ
∑

π�n

χπ(λ)χπ
(
(n)
)
χπ
(
(n − a) ∪ ρ

)

χπ(1n)
.

By Lemmas 2.2 and 2.3, the only non-zero terms of the sum correspond to hook
partition π = (n − i, 1i ), where i is an integer which fulfils either i ≤ a − 1 or
i ≥ n − a.

But, for such partitions π , the dimension χπ(1n) is
(n−1

i

)
, and a simple use of

the Murnaghan–Nakayama rule shows that χπ((n)) = (−1)i . Another application
Murnaghan–Nakayama rule gives:

• for i ≤ a − 1, one has that χπ
(
(n − a) ∪ ρ

) = χπ̂ (ρ); where π̂ = (a − i, 1i )
because the only ribbon of size n − a is contained in the first row of π .

• for i ≥ n − a, one has that χπ
(
(n − a) ∪ ρ

) = (−1)n−a−1χπ̂ (ρ) where π̂ =
(n − i, 1i−n+a) because the only ribbon of size n − a is contained in the first
column of π .

By Lemma 2.4, χπ(λ) depends on ε(λ) and in a polynomial way on m1(λ), …,
ma−1(λ). For each i ≤ a − 1 or i ≥ n − a, the quotient

n!
n(n − a)

(n−1
i

)

is (n−a−1)!multiplied by a polynomial in n, so this completes the proof of Theorem
1.1. ��

2.4 Small values

Using Lemma 2.4, we can also obtain explicit expressions. For example, using the
following notation for falling powers

(n)m := n(n − 1) · · · (n − m + 1),

for small values of a, we get:

ν12(λ) = (1 + ε(λ))(n − 3)!n − m1(λ)

2
;

ν2(λ) = (1 − ε(λ))(n − 3)!n + m1(λ) − 2

2
;

ν13(λ) = (1 − ε(λ))(n − 4)!1
6

(
(n − 1)2−2(m1−1)(n − 2) + (m1 − 1)2 − 2m2

)
.
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3 Bijective approach

Fix a permutation σ ∈ Sn of type λ � n with the same parity as a. In this section,
we will prove bijectively Theorem 1.1 in the case ρ = 1a ; that is, up to a factor
(n − a − 1)!, the number of ways to write σ as a product α · β, where α is a n-cycle
and β a (n − a)-cycle depends polynomially on

n,m1(λ), . . . ,ma−1(λ)

and not on the higher multiplicities of λ. The proof is a generalisation of the argument
given in [3] in the case a = 1.

Note that α = σ ·β−1 is entirely determined by β (recall that σ is fixed), hence the
question can be reformulated as follows: count the number of (n − a)-cycles β such
that σ ·β−1 is a full cycle.

Example 3.1 Take the partition λ = (3, 2, 2) of n = 7 and a = 2. We fix σ =
(1 2 3)(4 5)(6 7). Then the 5-cycle β = (1 3 7 5 2) fulfils the condition above. Indeed,
α = σ ·β−1 = (1 3 2 4 5 6 7) is a full cycle.

3.1 A necessary and sufficient condition

An (n − a)-cycle β can be written as follows

β = (b1)(b2) · · · (ba−1)(ba · · · bn−1), (3)

where the bi are distinct integers between 1 and n. While it may seem strange to write
explicitly a − 1 fixed points of β in Eq. (3) instead of all of them, this is central to our
construction.

Example 3.2 (Continuing Example 3.1) For β = (1 3 7 5 2), we can choose b1 = 4,
b2 = 1, b3 = 3, b4 = 7, b5 = 5 and b6 = 2. This is of course not the only possible
choice.

We would like α = σ ·β−1 to be a n-cycle. To ensure this condition, we look at the
graphical representation of α. By definition, it is the directed graph with vertex set
[n] and directed edges (i, α(i)) for i ∈ [n]. This graph is always a union of cycles,
corresponding to the cycles of α.

Example 3.3 The graphical representation of σ = (1 2 3)(4 5)(6 7) is the left-most
graph of Fig. 1.

The n − 2 oriented edges

{
bi −→ σ(bi ) for 1 ≤ i ≤ a − 1

bi −→ σ(bi−1) for a + 1 ≤ i ≤ n − 1
(4)

are some of the edges of the graphical representation of permutation α.
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Fig. 1 Graphs of Examples 3.3, 3.4, 3.10 and of the proof of Lemma 3.11

Example 3.4 (Continuing Example 3.2) Choose bi as above (for i = 1, . . . , 6). Then
the edges described in (4) are drawn on the middle-left graph of Fig. 1. They clearly
form a subgraph of the graphical representation of α = (1 3 2 4 5 6 7), which is the
right-most graph in Fig. 1 (for now, disregard the colouring).

The following lemma is an extension of [3, Proposition1].

Lemma 3.5 Fix an integer a and a permutation σ of the same parity as a. Let
b1, . . . , bn−1 be distinct integers between 1 and n and let β be the permutation defined
by Eq. (3). Set also α = σ β−1. Then α is a n-cycle if and only if the edges (4) form
an acyclic set of edges.

Proof If α is a n-cycle, its graphical representation is a cycle and, thus, every strict
subgraph is acyclic. It is in particular the case for the set (4) of edges.

In the other direction, let us assume acyclicity of (4); that is, the graphical repre-
sentation of α contains an acyclic subset of edges of size n−2. Hence, it can be either
a cycle or the union of two cycles. But, α has the same sign of a n-cycle (β is an
(n − a)-cycle, and the sign of σ corresponds to the parity of a) and hence the second
possibility never occurs. ��

3.2 Counting sequences

Let us now try to enumerate sequences b1, …, bn−1 as above.
We first enumerate sequences b1, …, ba−1 such that the edges bi → σ(bi ) do not

form any cycle. Such a sequence is equivalent to the ordered choice, in the graphical
representation of σ, of a − 1 edges that do not contain any cycle.

Lemma 3.6 Let G be a directed graph with n vertices and n edges, where G is a
disjoint union of mi cycles of length i for i ≥ 1. Then the number Na(σ) of acyclic
subsets of a − 1 edges is given by

Na(σ) =
a−1∑

k=0

∑

n1,...,na−1≥0
n1+···+(a−1)na−1=k

(−1)n1+···+na−1

(
n − k

a − 1 − k

) a−1∏

i=1

(
mi

ni

)
. (5)

In particular, when a is fixed, the above equation is a polynomial in n, m1, m2, …,
ma−1.
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Proof Let us label the cycles of the graph by integers from 1 to r and denote by λ j the
length of cycle j . Fix a subset J of [r ]. The number of sets of a − 1 edges containing
the cycle labelled j for all j in J is

(
n − kJ

a − 1 − kJ

)
, where kJ =

∑

j∈J

λ j .

We use the convention that the binomial coefficient vanishes if kJ > a − 1. By
inclusion–exclusion, the number of sets of a − 1 edges containing no cycles is

∑

J⊆[r ]
(−1)|J |

(
n − kJ

a − 1 − kJ

)
.

We split the sum depending of the value of kJ and on the number ni of j in J such
that λ j = i . Doing this, we obtain (5) (note that if ni > 0 for some i > a − 1, then
kJ > a − 1 and the corresponding term vanishes). ��

Finally, the number of possible values for the list (b1, . . . , ba−1) is (a − 1)!Na(σ).
The enumeration of the possible values of bi , for i ≥ a, is harder. A method due to

Lehman is to enumerate such sequences with an additional element x (which is also
an integer between 0 and n), with the condition that the edge ba → σ(x) does not
create a cycle when added to the graph in (4).

Definition 3.7 A Lehman sequence of type a for σ is a sequence (x, b1, . . . , bn−1) of
integers between 1 and n such that:

• the bi (1 ≤ i ≤ n − 1) are distinct (but x can be equal to some of the bi );
• the following set of n − 1 edges is acyclic:

⎧
⎪⎨

⎪⎩

bi −→ σ(bi ) for 1 ≤ i ≤ a − 1

bi −→ σ(bi−1) for a < i ≤ n − 1

ba −→ σ(x).

(6)

Example 3.8 (Continuing Example 3.4) With σ and bi (for i = 1, . . . , 6) defined as in
previous examples, we can choose any x ∈ {σ−1(3), σ−1(2), σ−1(4), σ−1(5), σ−1(6)}
so that (x, b1, . . . , b6) is a Lehman sequence of type 2 for σ. Indeed, the edge (1, σ(x))
must not create a cycle when added to the middle-left graph of Fig. 1.

In general, we shall see later that the number of possible values for x (when
b1, . . . , bn−1 are fixed) is the oriented distance from ba to f in the graphical rep-
resentation of α, where f is the integer between 1 and n different from all the bi (in
our example, ba = 1 and f = 6).

With the extra parameter x , Lehman sequences are easy to enumerate. The following
is an extension of [3, Proposition 2]).
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Lemma 3.9 The number of Lehman sequences of type a for σ is

n · (a − 1)! · Na(σ) · (n − a)!.

As a corollary, for a fixed a ≥ 1, it depends polynomially on n,m1,…,ma−1 and not
on higher multiplicities.

Proof We first choose an (a−1)-tuple (b1, . . . , ba−1) such that the edges bi → σ(bi )
do not contain a cycle. We saw that there are (a − 1)! · Na(σ) choices for this list.
Then, choose any number between 1 and n as the value for x .

Let us compute the number of possible values of ba , after we have fixed the values
of x, b1, . . . , ba−1. By definition of a Lehman sequence, ba must be different from all
values b1, . . . , ba−1. We must also avoid forming a cycle with the edge ba → σ(x)
in the graph with edges bi → σ(bi ). This forbids one additional value, the end of the
(possibly empty) maximal path beginning at σ(x) in this graph (this maximal path is
unique as at most one edge leaves every vertex). Finally there are n−a possible values
for ba .

The same proof shows that, if ba, . . . , b j−1 are fixed, there are n− j possible values
for b j (for all j ∈ {a + 1, . . . , n − 1}). This ends the proof of the lemma. ��
Example 3.10 [Illustration of the proof] Take as before σ = (1 2 3)(4 5)(6 7), b1 = 4,
b2 = 1 and b3 = 3. We also set x = 5, that is σ(x) = 4. As a consequence, we know
that (6) contains the middle-right graph of Fig. 1.

We want to find the number of possible values b4 �= b1, b2, b3 such that the edge
b4 → σ(b3) = 1 does not add any cycle to the configuration. In addition to the
forbidden values {4, 1, 3}, one should also avoid b4 = 5, which would create a cycle
(1, 4, 5). So the number of possible values for b4 is 3, as asserted in the proof above.

3.3 From sequences to permutations

Because of Lemma 3.5, to each Lehman sequence we can associate a permutation β of
type (n−a, 1a), such that σ ·β−1 is a full cycle. For fixed n and σ, denote the function
mapping a Lehman sequence of type a for σ by 
a . We now prove that 
a is k-to-1
(an extension of [3, Proposition 3]), for some appropriate number k.

Lemma 3.11 Let β be a permutation of type (n − a, 1a), such that σ ·β−1 is a full
cycle. Set

k = (a − 1)! · a(n − a)

2
· n

Then there are k Lehman sequences of type a that are pre-images of β by 
a.

Proof Fix a permutation β as in the statement of the lemma. A Lehman sequence
(x, b1, . . . , bn−1) of type a for β is given by:

• the choice of which fixed point of β does not appear in the list b1, . . . , ba−1 (we
will denote it f );
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• the choice of an element ba in the (n−a)-cycle of β (the values of ba+1, ba+2, . . .

follow from this choice);
• the choice of x ;
• a choice of a permutation of the fixed points b1, . . . , ba−1.

For the last item, the number of possible permutations is (a−1)! and does not depend
on the choices above. However, the number of choices for x does depend on f and
ba , so we enumerate directly the number of possible triplets (x, f, ba).

We consider the graphical representation of α = σ ·β−1. By assumption, this is
a directed cycle of length n. We can colour its vertices as follows (denote Gα;β the
resulting coloured graph):

• the fixed points of β are vertices coloured in blue (for readers of black-and-white
printed versions, these are squared vertices).

• the vertices corresponding to points in the support of β are vertices coloured in
red (circular vertices).

For example, if β = (1 3 7 5 2) and α = (1 3 2 4 5 6 7), then Gα;β is the right-most
graph of Fig. 1.

With this colouring, f and ba must be respectively chosen among the blue and red
vertices of Gα;β . The graph with edges (4) is obtained from Gα;β by erasing the edges
leaving the blue vertex f and the red vertex ba . This graph is a disjoint union of two
paths, one ending in ba and one ending in f (see Example 3.4 where ba = 1 and
f = 6).
Now, x must be chosen such that ba → σ(x) does not create a cycle, that is σ(x)

must be on the path ending in f . Thus, if ba and f are fixed, there are d(ba, f ) possible
values for x , where d is the oriented distance from ba to f in Gα;β (see Example 3.8).

Finally the number of triplets (x, f, ba) that yield a Lehman sequence is

∑

vb∈Vb
vr∈Vr

d(vr , vb), (7)

where Vb and Vr are, respectively, the set of blue and red vertices of Gα . Note that
d(vr , vb)−1 is the number of vertices v (of any colour), which are on the path between
vr and vb (and different from vr and vb). So expression (7) can be rewritten as

|Vb| · |Vr | +
∣∣∣∣∣∣

⎧
⎨

⎩(vb, vr , v), s.t.
vb is blue ;
vr is red ;
v is on the path from vr to vb.

⎫
⎬

⎭

∣∣∣∣∣∣

But any set of three distinct vertices of Gα;β with either two blue and one red vertices
or two red and one blue vertices can be seen in a unique way as a triplet of the set
above. So finally (7) is equal to

|Vb| · |Vr | +
(|Vb|

2

)
· |Vr | + |Vb| ·

(|Vr |
2

)
= |Vb| · |Vr |

2
(|Vb| + |Vr |).

As |Vb| = a, while |Vr | = n − a, this ends the proof of the lemma. ��
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Finally, Lemmas 3.9 and 3.11 imply the following. If ε(λ) = (−1)a , then the
number of (n − a)-cycles β such that σ β−1 is a cycle is

ν1a (λ) = n · (a − 1)! · Na(σ) · (n − a)!
(a − 1)! · a(n−a)

2 · n = 2
(n − a − 1)!

a
Na(σ). (8)

The case ρ = (1a) of Theorem 1.1 follows from Lemma 3.6.

3.4 Small values

Combining Eqs. (5) and (8), the proof above gives explicit formulae for ν(1a)(λ),
slightly different from the one obtained with the character approach. For instance,

ν12(λ) = (1 + ε(λ))
(n − 3)!

2
(n − m1(λ));

ν13(λ) = (1 − ε(λ))
(n − 4)!

3

((
n

2

)
− (n − 1) · m1 +

(
m1

2

)
− m2

)
.

The expressions look slightly different from the one obtained in Sect. 2.4, but they are
of course equivalent, as it can be easily checked by the reader.

We can now give a quick proof of Proposition 1.3, which follows directly from
the above bijective proof. If σ has no cycles of length smaller than a, except b fixed
points, then it is clear that Na(σ) = (n−b

a−1

)
. This yields the formula claimed in the

introduction.

4 Determining connection coefficients using induction relations

4.1 Another proof of Theorem 1.1

We now give an induction proof of Theorem 1.1. For any integer partition λ, let λ↓( j)

be the partition obtained from λ by removing a part of size j and replacing it with a
part of size j − 1. We do not use this notation if λ has no part of size j .

Lemma 4.1 Let λ � n + 1 and a < n a non-negative integer. Then

(a+1)|Cλ|ν1a+1(λ) = (n + 1)
∑

j≥2
m j (λ)>0

∣∣Cλ↓( j)

∣∣ ν1a
(
λ↓( j)
)

· (m j−1(λ)+1) · ( j−1),

and (a + 1)ν1a+1(λ) =
∑

j≥2
m j (λ)>0

ν1a
(
λ↓( j)
)

· m j (λ) · j. (9)

While we will establish in Sect. 6 a more general result (Corollary 6.6), we elect
to prove Lemma 4.1 directly immediately below to make the first four sections self-
contained.
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Proof Inspecting the left hand side of (9), we see that it counts triples (σ, α, β) in
Sn+1 with the following properties: σ ·α ·β = e, where e is the identity element; σ, α,
and β are of types (n+1), λ, and (n−a, 1a+1), respectively; and β has a distinguished
fixed point. Notice that α and β cannot share a fixed point because σ does not have
any, and their product is e. The right-hand side of (9) counts the union of quadruples
(s, σ̄, ᾱ, β̄) over { j ≥ 2;m j (λ) > 0} with the following properties: s ∈ [n + 1]; σ̄, ᾱ

and β̄ are permutations of [n+1] \ {s} of types (n), λ↓( j) and (n−a, 1a), respectively
with σ̄ · ᾱ · β̄ = e; and ᾱ has a member of a ( j − 1)-cycle distinguished. We give a
bijection between these two sets.

Suppose that (σ, α, β) is a triple counted by the left hand side (9), and suppose
that s is the distinguished fixed point of β. Denote by j the length of the cycle of α

containing s. Obviously,m j (λ) > 0 and, besides, j ≥ 2 as s cannot be a fixed point of
α. Simply remove s from σ, α and β to obtain permutations σ̄, ᾱ and β̄, respectively,
and record the image of s in α. It’s not difficult to see that σ̄, ᾱ and β̄ have the claimed
cycle type. Removing s from those permutations is equivalent to defining σ̄, ᾱ and
β̄ as the restrictions of (s σ(s)) σ, (s α(s)) α and β̄, respectively, to [n + 1] \ {s}.
Furthermore, we easily compute

σ̄ · ᾱ · β̄ = (s σ(s)) · σ ·(s α(s)) · α · β

= (s σ(s)) · (σ(s) σ ◦α(s)) · σ ·α · β = e,

where the third inequality follows from the fact that σ ◦α(s) = s.
The construction is clearly reversible, establishing the first assertion of the lemma.

For the second, it is well known that

|Cλ| = (n + 1)!∏
i i

mi (λ)mi (λ)! ,

whence we obtain, for j ≥ 2 with m j (λ) > 0,

(n + 1)
|Cλ↓( j) |
|Cλ| = j · m j (λ)

( j − 1)(m j−1(λ) + 1)
.

Therefore (9) becomes

(a + 1)ν1a+1(λ) =
∑

j≥2
m j (λ)>0

ν1a (λ
↓( j)) · m j (λ) · j,

completing the proof of the second assertion of the lemma. ��
We now prove Theorem 1.1 in the case ρ = 1a .

Proof of Theorem 1.1 for ρ = 1a Our proof proceeds by induction on a. By Theorem
1.2 (Boccara’s Theorem), we have

ν1(λ) = (1 − ε(λ))(n − 2)!,
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establishing the base case.
Now suppose a > 1. By induction, there exists a polynomial Ga−1(x1, . . . , xa−1)

such that for any particular partition λ with |λ| > a, we have

ν1a−1(λ) =
(
1 + (−1)a−1ε(λ)

)
(|λ| − a)!

(a − 1)! Ga−1(|λ|,m1(λ), . . . ,ma−2(λ)).

For a fixed λ, we use Lemma 4.1 to obtain that

ν1a (λ) = 1

a

∑

j≥2
m j (λ)>0

ν1a−1(λ↓( j)) · m j (λ) · j

= 1

a

∑

j≥2
m j (λ)>0

(1+(−1)a−1ε(λ↓( j)))(|λ↓( j)|−a)!
(a−1)! Ga−1(|λ↓( j)|,m1(λ

↓( j)),

. . . ,ma−1(λ
↓( j))) · m j (λ) · j. (10)

For j ≥ 2, we see that ε(λ↓( j)) = −ε(λ) and |λ↓( j)| = |λ| − 1. Thus, we see (10)
becomes

(1+(−1)aε(λ))(|λ| − a−1)!
a!

⎛

⎜⎜⎜⎝

a−1∑

j≥2
m j (λ)>0

Ga−1(|λ|−1, . . . ,m j−1(λ) + 1,m j (λ) − 1,

. . . ,ma−2(λ)) · m j (λ) · j+
∑

j≥a
m j (λ)>0

Ga−1(|λ|−1,m1(λ), . . . ,ma−2(λ)) · m j (λ) · j

⎞

⎟⎟⎟⎠

= (1 + (−1)aε(λ))(|λ| − a − 1)!
a!

⎛

⎜⎜⎜⎝

a−1∑

j≥2
m j (λ)>0

Ga−1(|λ| − 1,

. . . ,m j−1(λ) + 1,m j (λ) − 1, . . . ,ma−2(λ)) · m j (λ) · j

+Ga−1(|λ| − 1,m1(λ), . . . ,ma−2(λ))

⎛

⎜⎜⎜⎝|λ| −
a−1∑

j=1
m j (λ)>0

m j (λ) · j

⎞

⎟⎟⎟⎠

⎞

⎟⎟⎟⎠ .

Notice that in the two equations immediately above that the condition m j (λ) > 0 is
superfluous because there are no longer terms with λ↓( j), and the terms with m j (λ)
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are 0. The last equation contains a polynomial dependent on |λ|, and mi (λ) for 1 ≤
i ≤ a − 1, but otherwise independent of λ, completing the proof. ��

4.2 Small values

Notice that the above proof gives an inductive formula to compute ν1a (λ). For λ � n,
we have

ν12(λ) = (1 + ε(λ))(n − 3)!
2

(n − m1(λ));

ν13(λ) = (1 − ε(λ))(n − 4)!
3! ((n − m1(λ))2 − 2m2(λ));

ν14(λ) = (1 + ε(λ))(n − 5)!
4! ((n − m1(λ))3 − 6m2(λ)(n − m1(λ) − 2) − 6m3(λ)) .

Once again, the expressions look different from the ones obtained by the other method
(Sects. 2.4, 3.4), but they are of course equivalent.

4.3 A symmetric function formula

We end this section with a symmetric function formula. This formula will not be used
in this paper, but we mention it because it encodes our induction in a very compact
way. As this is not central in the paper, we do not recall needed definitions that
involve symmetric functions. We will, however, use the standard notation found in
[14, Chap. I].

Let 
 be the symmetric function ring. It admits a linear basis, called power-sum
basis (pλ)λ, indexed by all partitions. Let C[Sn] be the group algebra of Sn . Let us
consider the linear operator

ψ : C[Sn] → 


σ �→ 1
n! pλ,

where λ is the cycle type of σ. This is a natural transformation, which is used in
particular to link irreducible characters of the symmetric group with Schur functions
(see [14, Sect. I, 7]). Recall from Sect. 1 that Kλ is the sum of permutations of type λ

and lies in the centre of C[Sn].
The purpose of this section is to give an explicit expression for Fa(n) := ψ

(
K(n) ·

K(n−a,1a)
)
in terms of monomial symmetric functions (Mλ).

From the definitions, we have that

Fa(n) := ψ
(
K(n) · K(n−a,1a)

) = 1

n!
∑

λ�n
|Cλ|ν1a (λ)pλ.

123



J Algebr Comb (2015) 42:183–224 199

As always in this paper, the case a = 1 is easy. For a = 1, one has ν1(λ) =
(1 − ε(λ))(n − 2)!. Denoting as usual zλ = n!/|Cλ|, one has

F1(n) = (n − 2)!
∑

λ�n
(1 − ε(λ))

pλ

zλ
= (n − 2)!

(
∑

λ�n

pλ

zλ
−
∑

λ�n
ε(λ)

pλ

zλ

)

= (n − 2)!
∑

λ�n
λ�=(1n)

Mλ, (11)

where the last equality comes from [14, Chap. I, Eq (2.14’)].
We then proceed by induction using to the following lemma.

Lemma 4.2 For a ≥ 0,

Fa+1(n + 1) = 1

a + 1
�
(
Fa(n)
)
,

where � is the differential operator

∑

i

x2i
∂

∂xi
.

Proof Fix a ≥ 0. On the one hand, one has that

Fa+1(n + 1) = 1

(n + 1)!
∑

μ�n+1

|Cμ|ν1a+1(μ)pμ

= n + 1

(n + 1)! · (a + 1)

×
∑

μ�n+1

pμ

⎛

⎜⎜⎜⎝
∑

j≥2
m j (μ)>0

∣∣Cμ↓( j)

∣∣ ν1a
(
μ↓( j)
)

· (m j−1(μ)+1) · ( j−1)

⎞

⎟⎟⎟⎠ ,

where the second equality comes from Lemma 4.1.
Let λ↑( j) the partition obtained from λ by replacing a part of size j with a part of

size j + 1 (again, the notation is defined only if m j (λ) > 0). The function (μ, j) �→
(μ↓( j), j) is clearly bijective from the set {(μ, j), μ � n + 1, j ≥ 2, m j (μ) > 0}
to {(λ, j), λ � n, j ≥ 2, m j−1(λ) > 0} – the inverse is (λ, j) �→ (λ↑( j−1), j) – so
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we can change the summation indices.

Fa+1(n + 1) = 1

n! · (a + 1)

×
∑

λ�n
|Cλ| ν1a (λ)

⎛

⎜⎜⎜⎝
∑

j≥2
m j−1(λ)>0

(
m j−1(λ

↑( j−1)) + 1
) · ( j − 1) · pλ↑( j−1)

⎞

⎟⎟⎟⎠

= 1

n! · (a + 1)

∑

λ�n
|Cλ| ν1a (λ)

⎛

⎜⎜⎜⎝
∑

j≥2
m j−1(λ)>0

m j−1(λ) · ( j − 1) · pλ↑( j−1)

⎞

⎟⎟⎟⎠ .

But, on the other hand, it is easy to check that

∑

j≥2
m j−1(λ)>0

m j−1(λ) · ( j − 1) · pλ↑( j−1) = �(pλ).

A detailed proof of the previous equation can be found in [6, Sect. 6.1]; the reader
uncomfortable with infinitely many variables should also look at this reference, where
this issue is discussed. Finally, using the linearity of the operator �, we get that

Fa+1(n + 1) = 1

a + 1
�

(
1

n!
∑

λ�n
|Cλ| ν1a (λ) pλ

)
,

finishing the proof. ��

We need one more lemma before proceeding to the main theorem of this section.

Lemma 4.3 The operator � is injective.

Proof As � is homogeneous (it sends symmetric functions of degree n to symmetric
functions of degree n + 1), it is enough to prove the lemma for the restriction to
symmetric functions of a specific degree n. Consider a linear combination

∑
λ�n aλMλ

sent by� onto 0. Using the description of the action of� on the monomial basis given
in [6, Sect. 6.1], we get

∑

λ�n
aλ

⎛

⎜⎜⎜⎝
∑

j>0
m j (λ)>0

j · (m j+1(λ) + 1) · Mλ↑( j)

⎞

⎟⎟⎟⎠ = 0.
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Rewriting this as usual as a sum over μ and j , we get

∑

μ�n+1

Mμ

⎛

⎜⎜⎜⎝
∑

j>0
m j+1(μ)>0

aμ↓( j+1) · j · m j+1(μ)

⎞

⎟⎟⎟⎠ = 0.

This equation is equivalent to the following linear system: for any μ � n + 1,

∑

j>0
m j+1(μ)>0

aμ↓( j+1) · j · m j+1(μ) = 0 (Eμ)

Fix λ � n and μ = (λ1 + 1, λ2, λ3, . . .). Then equation (Eμ) involves the variable
aλ and variables aν with ν � n and ν1 = λ1 + 1. In particular, such partitions ν are
lexicographically bigger than λ.

In other terms, the linear system (Eμ)μ�n+1 admits a triangular subsystem and the
only solution is aλ = 0 for all λ � n. ��

We can now obtain an explicit formula for Fa(n). By convention, we set (x)−1 =
1

x+1 , which is compatible with the relation (n)m · (n − m) = (n)m+1.

Theorem 4.4 For any n > 0 and a ≥ 0, one has that

Fa(n) = (n − a − 1)!
a!

∑

λ�n
|λ|−�(λ)≥a

(|λ| − �(λ))a−1Mλ.

Proof Let us first look at the case a ≥ 1. We proceed by induction. For a = 1, the
theorem corresponds to Eq. (11). Let us suppose that the theorem is true for a fixed
a ≥ 1. Then, by Lemma 4.2 and induction hypothesis, one has that

Fa+1(n + 1) = 1

a + 1
�
(
Fa(n)
) = (n − a − 1)!

(a + 1)!
∑

λ�n
|λ|−�(λ)≥a

(|λ| − �(λ))a−1�(Mλ).

But, as explained in [6, Sect. 6.1],

�(Mλ) =
∑

j>0
m j (λ)>0

j · (m j+1(λ) + 1) · Mλ↑( j) .
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Substituting this into the equation above, we have that

Fa+1(n + 1)

= (n − a − 1)!
(a + 1)!

∑

λ�n
|λ|−�(λ)≥a

∑

j>0
m j (λ)>0

(|λ| − �(λ))a−1 · j · (m j+1(λ) + 1) · Mλ↑( j) .

We use the same manipulation as in the proof of Lemma 4.2: the double sum on λ � n
and j can be turned into a double sum on μ � n + 1 and j where μ = λ↑( j). Note
that the size and length of μ are related to λ by |μ| = |λ| + 1 and �(μ) = �(λ). We
get that

Fa+1(n + 1)

= (n − a − 1)!
(a + 1)!

∑

μ�n+1
|μ|−�(μ)≥a+1

∑

j>0

(|μ| − �(μ) − 1)a−1 · j · (m j+1(μ)) · Mμ

= (n − a − 1)!
(a + 1)!

∑

μ�n+1
|μ|−�(μ)≥a+1

Mμ · (|μ| − �(μ) − 1)a−1

⎛

⎝
∑

j>0

j · (m j+1(μ))

⎞

⎠

= (n − a − 1)!
(a + 1)!

∑

μ�n+1
|μ|−�(μ)≥a+1

Mμ · (|μ| − �(μ))a .

This ends the proof of the case a ≥ 1.
For a = 0, the same computation as above shows that

�

(
(n − 1)!

∑

λ�n

1

|λ| − �(λ) + 1
Mλ

)
= (n − 1)!

∑

μ�n+1
|μ|−�(μ)≥1

Mμ = F1(n + 1).

But, by Lemma 4.2, one also has �(F0(n)) = F1(n + 1). Hence the theorem follows
from the injectivity of �, given in Lemma 4.3. ��

Remark 4.5 The case a = 0 of Theorem 4.4 was already known, under a slightly
different form; see [19, Theorem 2].

Remark 4.6 Theorem 1 of [19] also contains a symmetric function involving all con-
nection coefficients c(n)

μ,λ; We can show our symmetric function formula contained in
Theorem 4.4 can be obtained from [19, Theorem 1] via involved λ-ringmanipulations.
The presentation above, however, is just as short and does not rely on the non-trivial
result [19, Theorem1].
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5 Separation probabilities

Definition 5.1 (from [1]) Let J be a set partition (J1, . . . , Jk) of [m] of length k. A
permutation σ ∈ Sn (with n ≥ m) is called J -separated if no cycle of σ contains two
elements from different blocks of J . It is said to be strongly J-separated if, moreover,
each Ji is contained in some cycle of σ.

It is easy to see that highly symmetric sets (i.e. sets of permutations whose sum lie
in the centre of the group algebra ofSn), that the number of J -separated permutations
only depends on the composition I = (i1, . . . , ik) of m, where i p = #Jp. By conven-
tion, a permutation is I -separated for a composition I , if it is (J1, . . . , Jk)-separated,
where Jp = {i p−1 + 1, . . . , i p}. We use the two notions of separation given by a set
partition and separation given by a composition interchangeably.

The same convention holds for strongly separable permutations.
As mentioned at the end of the paper [1], the problem of computing separation

probabilities or strong separation probabilities are linked to each other by a simple
relation (Eq. (34) of the cited paper). Therefore, we shall use the notion depending
on which one is most convenient. Note also, that for I = (1k) (the case for which we
have explicit expressions), the two notions coincide.

The rest of Sect. 5 is devoted to computing the strong separation probability of
the product of a random n-cycle with a random (n − a)-cycle, whereas in Sect. 6.3
we use the standard notion of separable permutations. Therefore, when we talk about
separable permutation in the remainder of Sect. 5, we will mean strongly separable.

An induction formula for these quantities is given in Sect. 5.4. To do that, we
need some preliminary results regarding the computation of separation probabilities
in simpler models: uniform random permutations (Sect. 5.1), uniform random odd
permutations (Sect. 5.2) and uniform random permutations of a given type (Sect. 5.3).

5.1 Uniform random permutation

Let I = (i1, . . . , ik) be a composition of m of length k. The following result can be
found in [17, p. 13], but we copy it here for completeness.

The probability P I that a uniform random permutation in Sn (n ≥ m) is strongly
I -separated is given by

P I = (i1 − 1)! · (i2 − 1)! · · · (ik − 1)!
m! . (12)

Proof The result is obvious for n = m. Indeed, if J is a set partition of [m], a
permutation in Sm is J -separated if it is the disjoint product of a cycle of support J1
((i1 − 1)! choices), a cycle of support J2 ((i2 − 1)! choices) and so on.

We then proceed by induction on n. A random permutation of n+1 can be obtained
from a random permutation σ of n by choosing uniformly an integer j between 1 and
n + 1 and

• either add n + 1 as a fixed point if j = n + 1;
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• or add n + 1 right after j in the cycle notation of σ.

Both operations do not change the fact that the permutation is J -separated, so the
probability of being J separated does not depend on n. ��

5.2 Uniform random odd permutation

Let I be a composition of m of length k. The probabilities P I
n,odd and P I

n,even for a
uniform random odd (respectively even) permutation inSn (n > m) to be I -separated
fulfils the relation:

P I
n,odd = n − 1

n
(P I

n−1,even) + 1

n
P I
n−1,odd. (13)

Proof Let Oddn and Evenn be the set of odd and even permutation inSn , respectively.
Then, one has a bijection

φ : Oddn � Oddn−1 ∪([n − 1] × Evenn−1),

where φ and its inverse are given by the following rules.

• For σ ∈ Sn , set φ(σ) to be the restriction of σ to [n − 1] if n is a fixed point of
σ; otherwise, let j = σ−1(n) �= n and set φ(σ) = ( j, τ ), where τ is obtained by
erasing n in the cycle decomposition of σ.

• φ−1(τ ) is its canonical embedding in Sn if τ is an odd permutation of [n − 1];
otherwise φ−1( j, τ ) = τ( j n) for ( j, τ ) ∈ [n − 1] × Evenn−1.

Clearly, in both cases, σ is I -separated if and only if τ is. A quick computation leads
to the formula above. ��
As a random permutation in Sn has probability P I to be I -separated, one has:

P I
n,odd + P I

n,even = 2P I .

Thus (13) can be made into the induction relation:

P I
n,odd = n − 1

n
(2P I − P I

n−1,odd) + 1

n
P I
n−1,odd.

To solve this induction, let us define QI
n = (P I

n,odd−P I ). Our induction then becomes

QI
n = −n − 2

n
QI

n−1

Together with the base case (the argument to compute P I
m,odd is the same than in the

proof of (12))

QI
m =
{
0 − P I if m − k is even,

2P I − P I if m − k is odd,
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we obtain that

QI
n = (−1)n−k+1P I m(m − 1)

n(n − 1)
.

Therefore, we have proved the following proposition (this result is also given in [17,
p. 61]).

Proposition 5.2 Let I be a composition of m of length k and n an integer with n ≥ m.
The probability for a random odd permutation in Sn to be I -separated is

P I
n,odd = P I ·

(
1 + (−1)n−k+1m(m − 1)

n(n − 1)

)
.

5.3 Uniform random permutation of a given type λ

Proposition 5.3 Let I = (i1, . . . , ik) be a composition of m of length k and λ a
partition of n of length r . The probability that a random permutation of type λ is
I -separated is given by

P I (λ) = 1

(n)m

∑

1≤ j1,..., jk≤r
distinct

k∏

t=1

(λ jt )it . (14)

Proof Each partition π of type λ can be written in exactly zλ := n!/|Cλ| ways as

π = (b1 . . . bλ1

)(
bλ1+1 . . . bλ1+λ2

)
. . . ,

with b1, . . . , bn containing exactly once each number from 1 to n. We denote C j (λ)

the set of indices in the j-th cycle of π , that is

C j (λ) := {λ1 + · · · + λ j−1 + 1, . . . , λ1 + · · · + λ j
}
.

Fix some distinct integers j1, . . . , jk between 1 and r . As in the introduction of the
section, we denote Jh = {ih−1 + 1, . . . , ih}. Let us consider the property: “for each h,
the numbers in Jh lie in the jh-th cycle of π”.

For this property to be true, each b−1(Jh) must be included in Ch(λ), which means
that there are (λ jh )ih possible values for the list (b

−1(ih−1 + 1), . . . , b−1(ih)). Thus,
in total, there are

∏k
t=1(λ jt )it possible values for (b−1(1), . . . , b−1(m)) such that the

considered property holds. As there are in total (n)m possible values for this list and
as this list is uniformly distributed when we take π uniformly at random in Cλ, the
probability that our property holds is

1

(n)m

k∏

t=1

(λ jt )it .
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For different sequences j1, . . . , jk these events are incompatible and their union
correspond to the fact that π is strongly J -separated, whence the result follows. ��
Let us denote RI (λ) = (n)m P I (λ) the sum in Eq. (14) (it is a polynomial function in
λ1, λ2, . . .). The following lemma will be useful in the next section.

Lemma 5.4 Let I = (i1, . . . , ik) be a composition of m of length k. For any partition
λ of n of length r , one has that

r∑

t=1

λt RI (λ + δt ) = (n + m)RI (λ) +
k∑

h=1

ih(ih − 1)RI−δh (λ),

where δt is the vector with only 0 components, except for its t-th component which
equals 1.

Proof Let us fix t ∈ [r ] and compare RI (λ + δt ) and RI (λ). The pairwise distinct
summation indices j1, . . . , jk obtained from (14) in RI (λ + δt ) and RI (λ) are the
same and the summands are different only in the case where one of the js , let us say
jh , is equal to t . Thus, one has that

RI (λ + δt ) − RI (λ) =
k∑

h=1

∑

j1,..., ĵh ,..., jk �=t
distinct

(
(λt + 1)ih − (λt )ih

) ∏

g �=h

(λ jg )ig .

The hat in the summation index means that we sum over choices of integers jg for
g �= h. But, by definition:

∑

j1,..., ĵh ,..., jk �=t
distinct

∏

g �=h

(λ jg )ig = RI\ih (λ\λt ).

Thus, noticing that (λt + 1)ih − (λt )ih = ih(λt )(ih−1), we obtain:

RI (λ + δt ) − RI (λ) =
k∑

h=1

ih(λt )(ih−1)RI\ih (λ\λt ).

Now we multiply by λt and sum this equality over t :

r∑

t=1

(
λt RI (λ + δt )

)− n · RI (λ)

=
r∑

t=1

k∑

h=1

ihλt (λt )(ih−1)RI\ih (λ\λt )

=
k∑

h=1

(
ih

r∑

t=1

(
(λt )ih + (ih − 1)(λt )(ih−1)

)
RI\ih (λ\λt )

)
.
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It is clear from the definition of RI that these functions satisfy

r∑

t=1

(λt )i RI (λ\λt ) = RI∪i (λ).

Indeed, we simply split the sum in RI∪i (λ) depending on which part of λ is associated
to the part i of I ∪ i . Returning to our computation, one has that

r∑

t=1

(
λt RI (λ + δt )

)− n · RI (λ) =
k∑

h=1

(
ih RI (λ) + ih(ih − 1)RI\ih∪(ih−1)(λ)

)
,

completing the proof. ��

5.4 Product of a uniform random n-cycle and a uniform random (n − a)-cycle.

Define π I
λ,μ to be the probability that the product of two uniformly selected random

permutations of types λ and μ, respectively, is strongly I -separated. For ease of nota-
tion, let P I

n,a := π I
(n),(n−a,1a).

The case a = 1 is particularly simple. Indeed, using Theorem 1.2, this is equivalent
to choosing a odd permutation uniformly at random. Therefore, the computation of
Sect. 5.2 gives that

P I
n,1 = P I

n,odd = P I ·
(
1 + (−1)n−k+1m(m − 1)

n(n − 1)

)
. (15)

Wewill then establish an induction relation for P I
n,a . Let us beginwith an elementary

lemma.

Lemma 5.5 Let I be a composition of an integer m and n and a be non-negative
integers with n > a and n ≥ m.

P I
n,a = a!(n − a)

(n − 1)!n!
∑

λ�n
|Cλ|ν1a (λ)P I (λ).

Proof The probability that the product α ·β, where α and β are an n-cycle and (n−a)-
cycle respectively, has cycle type λ is given by

|Cλ|ν1a (λ)

(n − 1)! n!
a!(n−a)

Of course, all permutations of a given type λ have the same probability to occur.
Therefore, the conditional probability that αβ is I -separated knowing that it has cycle
type λ is P I (λ). Putting everything together, we obtain the formula above. ��
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Theorem 5.6 Let I = (i1, . . . , ik) be a composition of an integer m and n and a be
non-negative integers with n ≥ m. One has that

n(n + 1)P I
n+1,a+1 = (n − m + 1)(n + m)P I

n,a +
k∑

h=1

ih(ih − 1)P I−δh
n,a .

Proof By Lemma 5.5, one has that

P I
n+1,a+1 = (a + 1)!(n − a)

n!(n + 1)!
∑

μ�n+1

|Cμ|ν1a+1(μ)P I (μ).

We now use Lemma 4.1 and obtain:

P I
n+1,a+1 = (a + 1)!(n − a)

n!(n + 1)!
×
∑

μ�n+1

n + 1

a + 1

∑

j≥2
m j (μ)>0

|Cμ↓( j) |ν1a
(
μ↓( j))( j − 1)(m j−1(μ) + 1)P I (μ)

We use the same reasoning as in the proof of Lemma 4.2: the function (μ, j) �→
(μ↓( j), j) is bijective—the inverse is (λ, j) �→ (λ↑( j−1), j)—so we can change the
summation indices.

P I
n+1,a+1 = a!(n − a)

n!n!
∑

λ�n

∑

j≥2
m j−1(λ)>0

( j − 1)m j−1(λ)|Cλ|ν1a (λ)P I (λ↑( j−1))

= a!(n − a)

n!n!
∑

λ�n
|Cλ|ν1a (λ)

�(λ)∑

t=1

λt P
I (λ + δt ).

The last inequality comes from the fact that, for a fixed partition λ if we consider the
multiset formed by ( j − 1)m j−1(λ) copies of λ↑( j−1) for each j with m j−1(λ) > 0,
it is the same as the multiset with λt copies of λ + δt for each t between 1 and �(λ).

Now, notice that we have already computed in Lemma 5.4 the sum over t appearing
in the previous equation (recall that P I (λ) = RI (λ)/(n)m). We obtain

P I
n+1,a+1 = a!(n − a)

n!n!
∑

λ�n
|Cλ|ν1a (λ)

×
⎛

⎝ (n + m)(n − m + 1)

n + 1
P I (λ) +

k∑

h=1

ih(ih − 1)

n + 1
P I−δh (λ)

⎞

⎠ .
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We can now use Lemma 5.5 again and we get that

P I
n+1,a+1 = (n + m)(n − m + 1)

n(n + 1)
P I
n,a + 1

n(n + 1)

(
k∑

h=1

ih(ih − 1)P I−δh
n,a

)
.

��
Recall that P I

n,1 is given by the simple Formula (15). Using this, Theorem 5.6 allows

us to compute P I
n,a for a ≥ 1 by induction on a and P I

n,0 by induction on |I | − �(I ).
We end this section by giving a few applications of this fact.

The induction on a for a ≥ 1 becomes particularly simple in the case I = (1k). In
this case, m = k and the sum in Theorem 5.6 vanishes. We therefore find that

n(n + 1)P(1k )
n+1,a+1 = (n − k + 1)(n + k)P(1k )

n,a ,

from which we deduce immediately the following formula.

Proposition 5.7 Let n, a and k be positive integers with a, k ≤ n. Then

P(1k )
n,a = (n − 1 + k)a−1 · (n − k)a−1

(n)a−1 · (n − a)a−1

(
1 + (−1)n−k k(k − 1)

n(n + 1)

)
.

But, Theorem 5.6 is also valid for a = 0 and hence

(n − m + 1)(n + m)P I
n,0 = n(n + 1)P I

n+1,1 −
k∑

h=1

ih(ih − 1)P I−δh
n,0 . (16)

Again, the case I = (1k) is particularly easy as the sum vanishes: we get that

(n − k + 1)(n + k)P(1k )
n,0 = n(n + 1)

1

k!
(
1 + (−1)n−k k(k − 1)

n(n + 1)

)
,

which simplifies to

P(1k )
n,0 =

{
1
k! if n − k is odd;
1
k!
(
1 + 2k(k−1)

(n−k+1)(n+k)

)
if n − k is even.

(17)

This formula was established by Du and Stanley [17, p. 46], see also [1, Eq. 2]. For
other compositions I , we are able to get information of the denominator of P I

n,0, seen
as a function of n.

Proposition 5.8 Fix a composition I of size m and length k. Then, there exist poly-
nomials Qe

I (n) and Qo
I (n) such that, for n ≥ m,

P I
n,0 =
{ Qe

I (n)

(n−m+1)(n−m+2)···(n−k)(n−k+1)(n+k)(n+k+1)···(n+m)
if n − k is even

Qo
I (n)

(n−m+1)(n−m+2)...(n−k)(n+k+1)···(n+m)
if n − k is odd.
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Proof We proceed by induction over m − k.
If m = k, that is if I = (1k), the result follows from the explicit expression (17).
For m > k, the result follows from Eq. (16), the induction hypothesis and the fact

that n(n+1)P I
n+1,1 coincide with a polynomial in n for even (respectively odd) values

of n. ��

Some examples computed by Du and Stanley [17, p. 52] indicate that the above
fractions are not in their reduced form and that there are some nice cancellations that
we did not manage to explain with our induction formula.

In another direction, after rescaling by defining

P̃ I
n,a = P I

n,a∏k
h=1(ih − 1)! , (18)

separation probabilities exhibit the same kind of dependency that we have observed
in Theorem 1.1. As for partitions, we denote mi (I ) the number of parts i in I .

Proposition 5.9 Fix n and a ≥ 1. The quantity P̃ I
n,a depends on I only through its

size m, its length k and its small multiplicities m1(I ), …, ma−1(I ).

Proof (by induction on a) The base case a = 1 follows from the explicit formula

P̃ I
n,a = 1

m!
(
1 + (−1)n−k+1m(m − 1)

n(n − 1)

)
,

obtained from Eqs. (12), (15) and (18).
Suppose that the statement holds for some a ≥ 1; that is, the rescaled separation

probability P̃ J
n,a is a function Fn,a(m′, k′,m1(J ), . . . ,ma−1(J )), where m′ and k′ are

respectively the size and length of J . Fix some composition I = (i1, . . . , ik)with size

m and length k. Then, Theorem 5.6, rewritten for P̃ I
n,a , yields:

n(n + 1) ˜P I
n+1,a+1 = (n − m + 1)(n + m )̃P I

n,a +
∑

1≤h≤k
ih �=1

ih
˜P I−δh
n,a .

The first summand depends on I only through m, k, m1(I ), …, ma−1(I ) by induction
hypothesis, sowe focus on the last sum.We split it according to the value of ih : namely,
set

Σb =
∑

1≤h≤k
ih=b

ih
˜P I−δh
n,a = b mb(I )

˜P Jb
n,a .
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The last equality comes from the fact that, for a fixed b, all compositions J := I − δh
are reordering of some composition Jb. Using the induction hypothesis, we get that

˜

P Jb
n,a =

⎧
⎪⎨

⎪⎩

Fn,a
(
m − 1, k,m1(I ), . . . ,mb−1(I ) + 1,mb(I ) − 1, . . . ,ma−1(I )

)
for 2 ≤ b ≤ a − 1

Fn,a
(
m − 1, k,m1(I ), . . . ,ma−2(I ),ma−1(I ) − 1

)
for b = a

Fn,a
(
m − 1, k,m1(I ), . . . ,ma−1(I )

)
for b > a.

Therefore, for a fixed b ≤ a, the quantity Σb depends on I only through m, k, m1(I ),
…, ma(I ). Moreover, we have

∑

b>a

Σb =
(
∑

b>a

b mb(I )

)
Fn,a
(
m − 1, k,m1(I ), . . . ,ma−1(I )

)

=
⎛

⎝m −
∑

b≤a

b mb(I )

⎞

⎠ Fn,a
(
m − 1, k,m1(I ), . . . ,ma−1(I )

)
,

so that this quantity also depends only on I only through m, k, m1(I ), …, ma(I ).
Hence the proposition holds for a + 1. ��
Remark 5.10 Weak separation probability (in opposition to strong separation proba-
bility as considered here) fulfils a much stronger symmetry property; see [1, Equation
(1)].

6 Products of cycles of arbitrary length

6.1 Induction relations

In this section, we present lemmas which will be needed in our inductive approach
for product of cycles of arbitrary length. Our approach in this section will be similar
to that given in the proof of Lemma 4.1, but be more involved because it will apply
more generally.

Let λ and μ be partitions of n. Define A(m, λ, μ) to be the tuples (σ, α, β) in Sn

such that their product satisfies σ ·α · β = e, where e is the identity permutation,
the permutations α, β have cycle type λ and μ, respectively, and σ has m cycles.
Define also Ai (m, λ, μ) to be the tuples in A(m, λ, μ) where α and β have precisely
i common fixed points. In general, we use lower case a to mean the cardinality of the
corresponding set with capital A (i.e. ai (m, λ, μ) = #Ai (m, λ, μ) and a(m, λ, μ) =
#A(m, λ, μ), etc. ).

It will be convenient in our induction to consider permutations of a set different
from [n]. DenoteSS the set of bijections from S to S. The notation above is naturally
extended to the case of permutations with ground set S by adding a superscript; that is,
AS(m, λ, μ) (respectively AS

i (m, λ, μ)) is the set of triples (σ, α, β) of permutations
of the ground set S with the above properties.

Before we begin our induction results, we make two simple observations regarding
the sets Ai (m, λ, μ). For a partition λ with at least r 1s, we will denote the partition

123



212 J Algebr Comb (2015) 42:183–224

obtained from λ by removing r 1s by λ[r ] and, recall from Sect. 4, the partition λ↓( j)

is obtained from λ by replacing a part of size j with a part of size j − 1 if m j (λ) > 0.
Thus, the two notations agree at λ↓(1) and λ[1].

Lemma 6.1 Suppose that n ≥ 1 and that 0 ≤ r ≤ min{m1(λ),m1(μ)}. Then

A[n]
r (m, λ, μ) =

⋃

S⊆[n]
|S|=r

A[n]\S
0 (m − r, λ[r ], μ[r ]) and

ar (m, λ, μ) =
(
n

r

)
a0(m − r, λ[r ], μ[r ]).

Proof The claim in the lemma is merely that the r common fixed points of α and β

will also be fixed points of σ. We may therefore remove these common fixed points
from the triple and consider the triple (σ, α, β) in A[n]\S(m − r, λ[r ], μ[r ]), where S
is the set of common fixed points. The second equation follows from the first. ��
Lemma 6.2 For n ≥ 1, we have

A(m, λ, μ) =
min{m1(λ),m1(μ)}⋃

r=0

Ar (m, λ, μ)

Proof Follows from the definitions of the relevant objects. ��
We therefore see from Lemmas 6.1 and 6.2 that evaluating a0(m − r, λ[r ], μ[r ]) will
help us obtain our formulae.

Our main induction theorem will determine A0(m, λ, μ). We will find it useful
to use rooted versions of the factorisations introduced. Let Ai (m, λ, μ̇) be the set of
all triples (σ, α, β) ∈ Ai (m, λ, μ) where we have distinguished one fixed point of
β. Similarly, for j ≥ 2 with m j (λ) > 0, let Ai (m, λ̂↓( j), μ) be the set of triples
(σ, α, β) ∈ A(m, λ↓( j), μ), with one member of an ( j − 1)-cycle distinguished, and
with precisely i fixed points in common. When j = 2, this means that we distinguish
a fixed point of α. If it is also a fixed point of β, we do not take it into account when
counting the common fixed points of α and β (thus, we should say that α and β have
precisely i non-rooted fixed points in common). The following decomposition holds.

Lemma 6.3 Suppose that μ, λ � n. If m1(μ) �= 0, we have

A[n]
0 (m, λ, μ̇) =

⋃

s∈[n]

⋃

j≥2
m j (μ)>0

A[n]\s
0 (m, λ̂↓( j), μ[1]).

Proof Define a function ψ mapping the left-hand side to the right-hand side by the
following rule. Suppose that s is the rooted fixed point of β and suppose that s is
contained in a j-cycle of α, for some j ≥ 2 with m j (λ) > 0. Since α and β have no
common fixed points, we know that α(s) �= s. Define ᾱ as (s α(s)) α and β̄ as β with
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the fixed point s removed. Also, let σ̄ = (s σ(s)) σ. Finally, letψ(σ, α, β) = (σ̄, ᾱ, β̄),
where the root of ᾱ is chosen to be α(s). We show that ψ is well defined and bijective.

To show that ψ is well defined, we must show the following. As defined, σ̄, ᾱ and
β̄ are permutations with ground set [n]; note, however, that s is clearly a fixed point
of all of them, and thus we can consider those permutations in S[n]\{s}. Therefore,
we must show that σ̄ · ᾱ · β̄ = e in S[n]\{s}, ᾱ and β̄ have cycle types λ↓( j) and μ[1],
respectively, and σ̄ has m cycles. We show these in turn.

The following computation shows that the product of σ̄, ᾱ and β̄ is the identity.

σ̄ · ᾱ · β̄ = (s σ(s)) · σ ·(s α(s)) · α · β

= (s σ(s)) · (σ(s) σ ◦α(s)) · σ ·α · β

= σ ·α · β

= e,

where the third equality follows from s = σ ◦α ◦ β(s) = σ ◦α(s). Thus, in S[n] we
see that the product of σ̄, ᾱ and β̄ is e, hence also true inS[n]\{s} since they each fix s.

Clearly, β̄ is of the claimed cycle type, and we can additionally see that (s α(s))
removes s from the cycle inα that contains it and leaves the rest of the cycle unchanged,
showing that ᾱ ∈ λ↓( j) for some j ≥ 2 and m j (λ) > 0. To show that σ̄ has m cycles,
note that (s σ(s)) removes s from the cycle in σ̄ that contains it, leaving the rest of the
cycle unchanged. We should take care to ensure that s is not the only member of its
cycle in σ; however, since α(s) �= s and β(s) = s, we see that σ(s) �= s, for otherwise
the product of σ, α and β would not be the identity. Thus, we see that σ̄ has m cycles.
This completes the proof. ��

We wish to apply the operations in Lemma 6.3 twice in succession. To do
this we introduce the following set. For i, j ≥ 2 with mi (λ),m j (μ) > 0, let
A0(m, λ̂↓(i), μ̂↓( j)) be the set of triples (σ, α, β) ∈ A(m, λ↓(i), μ↓( j)) such that a
member of an i − 1 and j − 1-cycle are roots of α and β, respectively, and α and
β have no non-rooted fixed points in common (thus, if i = 2, we are to root a fixed
point of α and a rooted fixed point of α can occur as a fixed point in β). We have the
following lemma.

Lemma 6.4 Let λ,μ � n and both m1(λ),m1(μ) �= 0. Then,

A[n]
0 (m, λ̇, μ̇) =

⋃

s,t∈[n]
s �=t

⋃

i, j≥2
mi (λ),m j (μ)>0

A[n]\{s,t}
0 (m, ˆλ[1]

↓(i)
, ˆμ[1]↓( j)

).

Proof Define a function ψ mapping the left-hand side to the right-hand side by the
following rule. Suppose that s and t are the rooted fixed points of α and β, respectively.
Define ᾱ = (t α(t))α and β̄ = (s β(s))β. Also let p = ᾱ ◦ β(s) and define

σ̄ = σ ·(t α(t)) · (s p). (19)

Finally, let ψ(σ, α, β) = (σ̄, ᾱ, β̄). We choose as the root of ᾱ to be α(t) and for β̄

we choose β(s).
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To show that ψ is well defined, we must show the following. As defined, σ̄, ᾱ and
β̄ are permutations with ground set [n]; we must, however, show that s, t are fixed
points of all of them, and thus we can consider those permutations in S[n]\{s,t}. We
must further show that σ̄ᾱβ̄ = e in S[n]\{s,t}, ᾱ and β̄ have cycle types λ↓(i) and
μ↓( j), respectively, and σ̄ has m cycles. The proof, however, largely follows the proof
of Lemma 6.3, so we omit the details. ��
Note that it is straightforward to use Lemma 6.3 when m2(λ) = 0. In that case, it
immediately follows from Lemma 6.3 that if λ,μ � n with m1(μ) �= 0, we have

m1(μ)a0(m, λ, μ) = n
∑

j≥3
m j (λ)>0

a0(m, λ↓( j), μ↓(1)) · (m j−1(λ) + 1) · ( j − 1). (20)

If m2(λ) �= 0, the complication is that a part of size 1 is created in λ↓(2). This
corresponds to a fixed point being created in a relevant permutation α and this fixed
point may occur in β.

Similarly, we can use easily Lemma6.4whenm2(λ) = m2(μ) = 0. If, furthermore,
one has m1(μ),m1(λ) �= 0, then

m1(λ)m1(μ)a0(m, λ, μ) = (n)2
∑

i, j≥3
mi (λ),m j (μ)>0

a0(m, λ
↓(i)
[1] , μ

↓( j)
[1] ) · (mi−1(λ) + 1)

· (i − 1) · (m j−1(μ) + 1) · ( j − 1). (21)

Note that this equation can be used only when m2(λ) = m2(μ) = 0. We shall be
mindful of this technicality, but will be able to overcome it easily.

The reader has certainly noticed that the arguments used in this Section and in the
proof of Lemma 4.1 are similar. In fact, the following variant of Lemma 6.3 and its
Corollary generalizes Lemma 4.1. We will, however, primarily be using Lemmas 6.3
and 6.4 in the coming sections.

Lemma 6.5 Suppose that μ, λ � n, and m1(μ) �= 0. Then

A[n](m, λ, μ̇) =
⋃

s∈[n]

⋃

j≥2
m j (λ)>0

A[n]\s(m, λ̂↓( j), μ[1]) ∪
⋃

s∈[n]
A[n]\s(m − 1, λ[1], μ[1]),

where the last union should be omitted if m1(λ) = 0 or m = 1.

Proof The proof is similar to that of Lemma 6.3, except that a triple (σ, α, β) can all
have the same fixed point. However, that is taken care of in the second union in the
lemma. ��

Counting the sets on both sides of Lemma 6.5 gives the following.
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Corollary 6.6 Suppose that λ,μ � n, and that m1(μ) �= 0. Then,

m1(μ) a(m, λ, μ) = n
∑

j≥2
m j (λ)>0

a(m, λ↓( j), μ↓(1)) · (m j−1(λ) + 1) · ( j − 1)

+ n a(m − 1, λ↓(1), μ↓(1)),

where the last term should be omitted if m1(λ) = 0 or m = 1.

Lemma 4.1 is a special case of this Corollary 6.6 (withm = 1 andμ = (n−a, 1a+1)).
We do not use Corollary 6.6 in its full generality in this paper. However, we hope that
it can be used in the future to give generalisations of Lemma 4.1.

6.2 A formula for multiplying cycles

We use the ideas developed in Sect. 6.1, to obtain enumerative results for multiplying
cycles; specifically, we look for formulae for a

(
m, (i + t, 1 j−t ), (i, 1 j ))

)
for i ≥ 1

and 0 ≤ t ≤ j . To simplify notation, we will omit the parenthesis and commas in the
notation of the partitions above: that iswe shorten the notation to a(m, i+t 1 j−t , i 1 j ).

First, note that, because of the sign function on Sn , a(m, i 1 j , i + t 1 j−t ) = 0
unless m + i + j + t is even.

Second, the case j = t = 0 is known; see e.g., [18, Corollary 3.4]. For any r ≥ 1
and m, we have

a(m, r, r)

(r − 1)! =
{ c(r+1,m)

(r+1
2 )

if r − m is even

0 otherwise,
(22)

where c(r+1,m) is a signless Stirling number of the first kind; that is, it is the number
of permutations on [r + 1] with m cycles.

Thus, we shall attempt to find a formula for a(m, i + t 1 j−t , i 1 j ) in terms of
a(s, r, r) for r ≤ i + j and s ≤ m. We first remark that we can easily determine a
formula for i = 1 and 0 ≤ t ≤ j , since

a(m, 1 + t 1 j−t , 1 j+1) = ( j + 1)!
(1 + t)( j − t)!δm, j−t+1,

where δ is the usual Kronecker δ function. We may therefore assume that i ≥ 2. We
have the following results when j − t = 0.

Lemma 6.7 Suppose that i ≥ 2 and j ≥ 0. Then

a(m, i + j, i 1 j ) = (i + j) j (i + j − 1) j
j ! a(m, i, i).

Proof We prove the claim by induction. The claim is trivial when j = 0, establishing
the base case. Notice that a permutation of type (i+ j) has no fixed points, so a(m, i+
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j, i 1 j ) = a0(m, i + j, i 1 j ). Now assuming that j > 0, note that i + j ≥ 3, and we
can apply Lemma 6.3 as we did in (20). We get that

a(m, i + j, i 1 j ) = (i + j) · (i + j − 1)

j
a(m, i + j − 1, i 1 j−1).

Applying induction gives the desired formula. ��

Notice that if i− j+ t < 0, or equivalently j > i+ t , that a0(m, i+ t 1 j−t , i 1 j ) = 0.
Keeping that in mind, we have the following lemma.

Lemma 6.8 Suppose that i ≥ 2 and 0 ≤ t ≤ j ≤ i + t . If i − j + t ≥ 1, we have

a0(m, i + t 1 j−t , i 1 j ) = (i + j)!
(i − j + t)!

(
i − 1

j − t

)(
i + t − 1

j

)
a(m, i − j + t, i − j + t),

and if i − j + t = 0, we have

a0(m, i + t 1 j−t , i 1 j ) = (i + j)!
i · (i + t)

δm,2.

Proof Substituting λ = (r, 1n−r ) and μ = (s, 1n−s) in (21) yields that

a0(m, r 1n−r , s 1n−s)=n(n − 1) · (r − 1)(s − 1)

(n − r)(n − s)
a0(m, r−1 1n−1−r , s−1 1n−1−s).

(23)
But this equation is only valid if s, r ≥ 3. The idea is to iterate it as long as possible,
and deal with the two special cases at the end.

If i − j + t ≥ 2, we can iterate (23) without any complication. If a0(m, i 1 j , i +
t 1 j−t ) is non-zero, we have

a0(m, i + t 1 j−t , i 1 j )

= (i + j)(i + j − 1)(i − 1)(i + t − 1)

j ( j − t)
a0(m, i + t − 1 1 j−t−1, i − 1 1 j−1)

= (i + j)(i + j − 1)(i − 1)(i + t − 1)

j ( j − t)

· · · (i − j + t + 2)(i − j + t + 1)(i − j + t)(i − j + 2t)

(t + 1)1

× a0(m, i − j + 2t, i − j + t 1t )

= (i + j)2( j−t)(i − 1) j−t (i + t − 1) j−t

( j) j−t ( j − t) j−t
a0(m, i − j + 2t, i − j + t 1t ). (24)
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Therefore, we have

a0(m, i + t 1 j−t , i 1 j )

= (i + j)2( j−t)(i − 1) j−t (i + t − 1) j−t

( j) j−t ( j − t) j−t
a(m, i − j + 2t, i − j + t 1t )

= (i + j)!
(i − j + 2t)!

(
i − 1

j − t

)
(i + t − 1)!

(i − j + 2t − 1)! j !t !
× (i − j + 2t)t (i − j + 2t − 1)t

t ! a(m, i − j + t, i − j + t)

= (i + j)!
(i − j + t)!

(
i − 1

j − t

)(
i + t − 1

j

)
· a(m, i − j + t, i − j + t).

If i− j+ t ≤ 1, we cannot use Eq. (21) iteratively as long as needed.We can, however,
explicitly count the final stages of the iteration given by a0(m, r 1n−r , 2 1s). In fact,
only the cases r = n − 2 and r = n − 1 will be needed below.

If r = n − 2, we have by explicitly counting

a0(m, n − 2 12, 2 1n−2) = n!
2(n − 2)

δm,2

and if r = n − 1, we have

a0(m, n − 1 1, 2 1n−2) = n! δm,1 = n! a(m, 1, 1).

Thus, when i − j + t = 1, we have by repeating the computation in (24)

a0(m, i + t 1 j−t , i 1 j )

= (i + j)2(i−2)(i − 1)i−2(i + t − 1)i−2

( j)i−2( j − t)i−2
· a0(m, t + 2 1, 2 1 j−i+2, )

= (i + j)2(i−2)(i − 1)i−2(i + t − 1)i−2

( j)i−2( j − t)i−2
( j − i + 4)! da(m, 1, 1)

= (i + j)! a(m, 1, 1),

which is the claimed formula when i − j + t = 1. If i − j + t = 0, repeating the
computation in (24) gives

a0(m, i + t 1 j−t , i 1 j )

= (i + j)2(i−2)(i − 1)i−2(i + t − 1)i−2

( j)i−2( j − t)i−2
· a0(m, t + 2 12, 2 1 j−i+2)

= (i + j)2(i−2)(i − 1)i−2(i + t − 1)i−2

( j)i−2( j − t)i−2

( j − i + 4)!
2( j − i + 2)

δm,2

= (i + j)!
i · (i + t)

δm,2.
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This completes the proof. ��
This lemma gives an explicit formula for a(m, i 1 j , i + t 1 j−t ).

Theorem 6.9 Suppose that i ≥ 2 and 0 ≤ t ≤ j , and further suppose that i+ j+t+m
is even. Then,

a(m, i + t 1 j−t , i 1 j )

=
j−t∑

s=max{0, j−i−t+1}

(i + j)!
s!(i − j + t + s)

(
i − 1

j − s − t

)(
i + t − 1

j − s

)

× c(i − j + t + s + 1,m − s)
(i− j+t+s+1

2

) + 
(m, i, j, t),

where


(m, i, j, t) =
{
0 if i − j + t ≥ 1;

(i+ j)!
( j−i−t)!i ·(i+t) δm− j+i+t,2 if i − j + t ≤ 0.

Proof We have from Lemmas 6.1 and 6.2, that

a(m, i + t 1 j−t , i 1 j ) =
∑

s

(
i + j

s

)
a0(m − s, i + t 1 j−t−s, i 1 j−s). (25)

Notice that if i− j+t ≤ 0, then a0(m−s, i+t 1 j−t−s, i 1 j−s) = 0 unless s ≥ j−i−t .
Hence the range for s in the theorem. Applying Lemma 6.8 to the summand in (25)
and using formula (22) gives the desired formula. ��
We mention a particularly interesting case of multiplying two i-cycles in Sn .

Corollary 6.10 Suppose that i ≥ 2, j ≥ 0 and i + j + m is even. Then,

a(m, i 1 j , i 1 j ) =
j∑

s=max{0, j−i+1}

(i + j)!
s!(i − j + s)

(
i − 1

j − s

)2 c(i − j + s + 1,m − s)
(i− j+s+1

2

) + 
(m, i, j),

where


(m, i, j) =
{
0 if i − j > 0;
(i+ j)!

( j−i)!i2 δm− j+i,2 if i − j ≤ 0.

6.3 Separation probabilities when neither cycle is full

In this section, we use the standard notion of separable permutations, as opposed
to strong separation used in most of Sect. 5. In this section, we use Lemmas 6.1
and 6.4 to determine the separation probability for an arbitrary composition I when
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multiplying two (n−1)-cycles inSn . To that end, let λ,μ � n and I = (i1, i2, . . . ik)
be a composition of m ≤ n. We use the notation of [1]: σI

λ,μ is the probability that the
product of two uniformly distributed permutations of cycle types λ andμ, respectively,
is I -separated. When λ = μ = (n), the following was proved in [1]:

σI
(n),(n) = (n − m)!∏(i j )!

(n − 1)!2 Dm,k
n , (26)

where

Dm,k
n = (n − 1)!

(n + k)
(n+m
m−k

)
(

(−1)n−m
(
n − 1

k − 2

)
+

m−k∑

r=0

(
n + m

n + k + r

)(
n + r + 1

m

))
,

We are chiefly interested in the case λ = μ = (n) or (n − 1, 1). Let SIλ be the number
of permutations that are I -separated over all products of two permutations of cycle
type λ. Thus,

SI(n) = (n − 1)!2σI
(n),(n) = (n − m)!

∏
(i j )!Dm,k

n .

Let A[n](λ) = ∪m A[n](m, λ, λ); that is, A[n](λ) it is set of all triples (σ, α, β) such
that σ αβ = e inSn andα andβ have cycle type λ. Our goal is to determine the number
of such triples in A[n] ((n − 1, 1))where σ is I -separated. Using the decompositions in
Lemmas 6.1 and 6.4, we see that the elements in A[n]((n − 1, 1)) come in two forms;
either the triple (σ, α, β) has a common fixed point or it does not. We take these
two cases separately, with the second case being a lot more involved. In speaking of
separation below, we take J = (J1, . . . , Jk) to be the set partition of {1, 2, . . . ,m},
where Jp = {i p−1 + 1, . . . , i p}. However, we remind ourselves that any set partition
J whose block sizes realise the composition I will have SJ

λ = SIλ . We use this fact
repeatedly below.

If (σ, α, β) has a common fixed point c, then by Lemma 6.1 these triples are in
bijection with triples (σ̂, α̂, β̂) in A[n]\c ((n − 1)). Thus, if c ∈ [m], σ is J -separated
if and only if σ̂ is J \ c-separated, and if c /∈ [m] then σ is J -separated if and only if

σ̂ is J -separated. We have a total of
∑k

j=1 i j S
I↓(i j )
(n−1) in the former case, and

(n − m)SI(n−1) (27)

in the latter case. The former simplifies as

k∑

j=1

i j S
I↓(i j )
(n−1) =

k∑

j=1
i j �=1

i j S
I↓(i j )
(n−1) +

k∑

j=1
i j=1

i j S
I↓(i j )
(n−1)

123



220 J Algebr Comb (2015) 42:183–224

=
k∑

j=1
i j �=1

i j (n − m)!(i j − 1)!
k∏

p=1
p �= j

(i p)!Dm−1,k
n +

k∑

j=1
i j=1

i j (n − m)!
k∏

p=1
p �= j

(i p)!

Dm−1,k−1
n−1

= (n − m)!
k∏

j=1

(i j )!
(
(k − m1(I ))D

m−1,k
n−1 + m1(I )D

m−1,k−1
n−1

)
. (28)

We see from Lemma 6.4 that the set of triples (σ, α, β) that do not have a common
fixedpoint is in bijective correspondencewith the triples in

⋃
s,t∈[n]
s �=t

A[n]\{s,t}((n−2)), and

(σ, α, β) corresponds to (σ̂, α̂, β̂) where σ = (s u)(t v)σ̂, for some u, v ∈ [n] \ {s, t}
not necessarily distinct. Of course, the effect of (s u) and (t v) is to bring s into
the cycle containing u and t into the cycle containing v in σ̂. Thus, enumerating
the triples (σ, α, β) with no common fixed point is equivalent to enumerating tuples
(s, t, u, v, σ̂, α̂, β̂), where s, t ∈ [n] are distinct, u, v ∈ [n] \ {s, t} are not necessarily
distinct, and (σ̂, α̂, β̂) ∈ A[n]\{s,t}((n − 2)). Since we are often not concerned with α̂

and β̂ (just that they are part of the relevant triple), wewill generally omit writing them.
Furthermore, we are trying to determine in this correspondence when σ is I -separated,
which will rely on a case analysis on s, t, u, v and on the separation probabilities of
σ̂. We discuss this in the three cases given by the size of the intersection of {s, t} with
[m].

If {s, t} is disjoint from [m], then σ is J -separated if and only if σ̂ is J -separated in
S[n]\{s,t}. The number of quadruples s, t, u, v for which {s, t} are disjoint from [m]
are (n − m)2(n − 2)2. Thus, the total number of tuples (s, t, u, v, σ̂) in this case is

(n − m)2(n − 2)2SI(n−2) (29)

Now suppose that exactly one of s, t ∈ [m], and for now assume it is s (the case for
t is the same). Since s ∈ [m], then s ∈ J j for some j . Recall, the effect of (s u) on σ̂

is to bring s into the cycle containing u in σ̂. If u /∈ [m] we see that σ is J -separated
if σ̂ is J (s, u)-separated, where J (s, u) is the set partition with s replaced by u. The
number of such σ̂ is SI(n−2) and the number of quadruples (s, t, u, v) when u /∈ [m] is
i j (n − m)(n − m − 1)(n − 2) (each factor gives the number of choices for s, t, u, v,
respectively), giving a total of i j (n − 2)(n − m)2SI(n−2). If u ∈ [m], then u must be
in the same part as s, and σ is J -separated if and only if σ̂ is J \ {s}-separated. Thus,
the number of choices of s, t, u, v when u ∈ [m] is i j (n − m)(i j − 1)(n − 2), which
gives a total contribution of i j (i j − 1)(n − m)(n − 2)SI↓(i j ) in this case. Summing
over all j and multiplying by two to account for the case t ∈ [m] and s /∈ [m] we get

2(n − 2)(n − m)2

k∑

j=1

i j S
I
(n−2) + 2(n − m)(n − 2)

k∑

j=1

(i j )2S
I↓(i j )
(n−2) , (30)
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as the number of tuples (s, t, u, v, σ̂) where exactly one of s, t ∈ [m].
The final case is when both s, t ∈ [m]. There are two subcases: u = v and u �= v.
If u = v, then for σ to be J -separated s, t must be in the same block of J , say J j ,

as (s u)(t u) will bring them into the same cycle of σ̂. If u ∈ [m], then u must be in
the same block as s and t and σ is J -separated if and only if σ̂ is J \ {s, t}-separated.
There are i j (i j − 1)(i j − 2) choices for s, t and u in this case. Thus, contributions
when u ∈ [m] total

k∑

j=1

(i j )3S
I↓↓(i j )
(n−2) , (31)

where I ↓↓ (i j ) is the composition I with i j replaced by i j − 2. If u /∈ [m], then σ is
J -separated if σ̂ is J (s, t; u)-separated, where J (s, t; u) is J with s, t replaced by u.
Since we have i j (i j − 1)(n −m) choices for s, t and u, the total contribution u /∈ [m]
is

k∑

j=1

(i j )2(n − m)S
I↓(i j )
(n−2) . (32)

Finally, if u �= v, first consider the case where s and t are in the same part of J .
Then u and v are either both in [m], one is in [m] and the other is not, or neither is in
[m]. The contributions in each case are given by, respectively, a summand of

k∑

j=1

(i j )4S
I↓↓(i j )
(n−2) + 2

k∑

j=1

(i j )3(n − m)S
I↓(i j )
(n−2) +

k∑

j=1

(i j )2(n − m)2S
I
(n−2). (33)

If s, t are not in the same part of J , thenwe have the following cases if σ is J -separated:
either u, v ∈ [m], in which case u is in the same block as s and v is in the same block
as t in J ; exactly one of u or v is in [m], say u, and then u must be in the same block
of J as s; or, u, v /∈ [m]. The total contribution from these cases is

k∑

j=1

k∑

p=1
p �= j

(i j )2(i p)2S
I↓(i j )↓(i p)
(n−2) + 2

k∑

j=1

∑

p=1
p �= j

i j i p(i j − 1)(n − m)S
I↓(i j )
(n−2)

+
k∑

j=1

k∑

p=1
p �= j

i j i p(n − m)2S
I
(n−2). (34)

Collecting like terms in (29)–(34), we get

⎛

⎝(n − m)2(n − 2)2
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+
k∑

j=1

⎛

⎝2(n − 2)(n − m)2i j + (i j )2(n − m)2 + i j
∑

p �= j

i p(n − m)2

⎞

⎠

⎞

⎠ SI(n−2)

+
k∑

j=1

(
2(i j )2(n − m)(n − 2) + (i j )2(n − m)

+ 2(i j )3(n − m) + 2(i j )2
∑

p �= j

(i p)(n − m)

⎞

⎠ S
I↓(i j )
(n−2)

+
k∑

j=1

(
(i j )4 + (i j )3

)
S
I↓↓(i j )
(n−2) +

k∑

j=1

(i j )2(i p)2S
I↓(i j )↓(i p)
(n−2) . (35)

The first sum in (35) is simplified as

(n − m)2S
I
(n−2)

⎛

⎝(n − 2)2 +
k∑

j=1

(
2(n − 2)i j + (i j )2 + (i j )(m − i j )

)
⎞

⎠

= (n − m)2S
I
(n−2)

⎛

⎝(n − 2)2 +
k∑

j=1

(
2(n − 2)i j + i jm − i j

)
⎞

⎠

= (n − m)2S
I
(n−2)

(
(n + m − 2)2 − m

)
.

The second sum above is simplified as

(n − m)

k∑

j=1

(
2(i j )2(n − 2) + 2(i j )3 + 2(i j )2(m − i j ) + (i j )2

)
S
I↓(i j )
(n−2)

= (n − m) (2n + 2m − 7)
k∑

j=1

(i j )2S
I↓(i j )
(n−2)

= (n − m) (2n + 2m − 7)
k∑

j=1

(i j )2(n − m − 1)!
∏

x �= j

(ix )!(i1 − 1)!Dm−1,k
n−2

= (n − m)!
(∏

(ix )!
)

(2n + 2m − 7) Dm−1,k
n−2

⎛

⎝
k∑

j=1

(i j − 1)

⎞

⎠

= (n − m)!
(∏

(ix )!
)

(2n + 2m − 7) Dm−1,k
n−2 (m − k).

For the third sum, we are mindful that S
I↓↓(i j )
(n−2) is 0 if i j = 1 and I ↓↓ (i j ) has one

less part if i j = 2. These can both be taken care of with the summation index and by
noting that the coefficient is usually 0 in such cases, and likewise for the fourth term.
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Thus, the third and the fourth sum in (35) become

k∑

j=1

(
(i j − 2)2(i j )2

)∏

x �= j

(ix )!(i j − 2)!(n − m)!Dm−2,k
n−2

+
k∑

j=1

∑

p �= j

(i j )2(i p)2(n − m)!
∏

x �=p, j

(ix )!(i j − 1)!(i p − 1)!Dm−2,k
n−2

= (n − m)!
(∏

(ix )!
)
Dm−2,k
n−2

⎛

⎜⎜⎜⎝
∑

j=1
i j �=1

(i j − 2)2 +
∑

j=1
i j �=1

(i j − 1)(m − i j − k + 1)

⎞

⎟⎟⎟⎠

= (n − m)!
(∏

(ix )!
)
Dm−2,k
n−2 ((m − k − 2)(m − k) + k − m1(I )) .

Combining all the parts, we have the following theorem.

Theorem 6.11 Suppose that n is a positive integer and that I = (i1, . . . , ik) is
a composition of length k of m, with k,m ≤ n. Then the separation probability
σI

(n−1,1),(n−1,1) is given by

(n − m)!∏(i j )!
n2(n − 2)!2

(
(k − m1(I ))D

m−1,k
n−1 + m1(I )D

m−1,k−1
n−1 + Dm,k

n−1

+
(
(n + m − 2)2 − m

)
Dm,k
n−2 + (m − k)(2n + 2m − 7)Dm−1,k

n−2

+ ((m − k − 2)(m − k) + k − m1(I )) D
m−2,k
n−2

)
.

In [1, Eq. 1], the authors state that
σI
λ,(n)∏
(i j )! depends only on n, λ,m and k. For the special

case when λ = (n), this is apparent from the explicit form of σI
(n),(n) given in (26).

In the same spirit, we have the following corollary. Note the unexpected analogy with
the case ρ = (1) in Theorem 1.1.

Corollary 6.12 Suppose that n ≥ 1 and I = (i1, . . . , ik) is a composition of m. Then
σI
(n−1,1),(n−1,1)∏

(i j )! depends only on n,m, k and m1(I ).

This result invites us to state the following conjecture. We have computational
evidence for the following conjecture for small a and n.

Corollary 6.13 Let a and n be two non-negative integers with a < n, λ a parti-

tion of n and I = (i1, . . . , ik) is a composition of m. Then
σI
(n−a,1a ),λ∏

(i j )! depends on

a, n, λ,m, k,m1(I ), . . . ,ma−1(I ) but not the higher multiplicities of I .
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